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Abstract
In this paper, we present explicit results for the fusion of irreducible and higher
rank representations in two logarithmically conformal models, the augmented
c2,3 = 0 model as well as the augmented Yang–Lee model at c2,5 = −22/5. We
analyse their spectrum of representations which is consistent with the symmetry
and associativity of the fusion algebra. We also describe the first few higher
rank representations in detail. In particular, we present the first examples of
consistent rank 3 indecomposable representations and describe their embedding
structure. Knowing these two generic models we also conjecture the general
representation content and fusion rules for general augmented cp,q models.

PACS number: 11.25.Hf

1. Introduction

Logarithmic conformal field theories (logarithmic CFTs) have attracted quite a lot of attention
in recent years. These theories are a generalization of standard CFT which also allows
for an indecomposable action of the Virasoro modes. There are already quite a number of
applications in such different fields as statistical physics (e.g. [1–4]), string theory (e.g. [5–7])
and Seiberg–Witten theory (e.g. [8]) which necessarily incorporate this generalization of
CFT. See [9–13] for an introduction to the field and a more complete list of applications.
Nevertheless, studying logarithmic CFTs has only just begun because we still know only few
logarithmic models explicitly and the efforts to disentangle the general structure prove to be
much more complicated and tedious as in ordinary CFT (see e.g. [14–19]). This paper hopes
to give a considerable contribution to this ongoing effort as it presents and explicitly discusses
the first examples of models with a much more complicated indecomposable structure up to
rank 3.

The most prominent examples of logarithmic CFTs up to now have emerged from studying
a specific series of the so-called minimal models in CFT, the cp,1 models [13, 20–25]. As
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standard minimal models these actually emerge to be trivial as they provide zero representation
content. On the other hand, if one takes into account representations corresponding to an
enlarged Kac table one encounters non-trivial models which include representations with
indecomposable structure. This is the reason why we like to call these ‘augmented cp,1

models’. In the point of view of the Virasoro representation theory this augmentation actually
comprises representations with weights in the whole infinite Kac table. On the other hand, it
has been found that these theories exhibit an enlarged triplet W-algebra [26]. With respect
to this enlarged symmetry algebra the representation content of this theory can be composed
into a finite set of representations associated with a finite standard cell of the Kac table. In
comparison to the original minimal model of central charge cp,1 this standard cell is enlarged
by a factor of 3 on either side as if it described c3p,3.

But there is no reason not to consider a similar augmentation in the Kac table of the
general cp,q minimal models. This paper is devoted to the study of these general augmented
cp,q models. We will concentrate on the Virasoro representation theory here and, thus, regard
an augmentation to the whole infinite Kac table. The question whether these models also
exhibit an enlarged W-algebra has not been answered yet, although we hope to use the
findings of this paper to settle this question soon [27] (see also [28–30]). The particular
example of the augmented c2,3 = 0 model has already been studied in [31, 32], but up to this
paper the precise structure of the Virasoro representations has been out of reach.

There have also been studies of Jordan cells with rank higher than 2 on the level of
correlation functions and Ward identities in the CFT literature [14, 16, 17, 33–37]. However,
the models and their representations discussed in this paper are the first ones where we can see
explicitly how a higher rank structure appears while generating a representation as a Virasoro
module from some ground states.

We want to explore the full spectrum of these augmented cp,q models by successively
fusing representations which we already know we have to take into the spectrum. The concept
of the fusion product lies at the heart of conformal representation theory and has been subject
to many thorough mathematical studies (see e.g. [38–42]). It governs the representation
theoretic aspects of the operator product expansion and, hence, puts severe constraints on
all n-point functions in CFT. It follows that the fusion product actually dictates which set of
representations of the Virasoro algebra at a certain conformal weight can be combined into a
consistent CFT model. Hence, the successive application of the fusion product will actually
lead us to the whole consistent representation space of the augmented cp,q models.

The algorithm which we use to compute these fusion products relies on the work of
[20, 43]. In [43], Nahm showed that the main information characterizing a representation can
be found in a small quotient space of this representation, called the special subspace, which is
finite for the large class of so-called quasirational CFTs. He actually proved that the fusion of
quasirational representations leads again to a finite number of quasirational representations.
In [20], Gaberdiel and Kausch used the Nahm algorithm of the proof in [43] to propose a
procedure how to efficiently calculate a fusion product of two quasirational representations.
This procedure was successfully applied to the augmented cp,1 models in [20]. In this paper, we
present the results of fusion products which have been calculated based on the implementation
of the Nahm algorithm as well as this procedure for the general cp,q models.

In section 2 we give a short review of this Nahm algorithm and the resulting procedure
how to calculate a fusion product. We also comment on our specific computer implementation.
In section 3 we shortly introduce minimal models as well as their augmented generalization.
In section 4 we then discuss the easiest general augmented cp,q model which is not contained
in the cp,1 model series, the c2,3 = 0 model. This model exhibits a much more complicated
indecomposable structure up to rank 3 in comparison to the cp,1 models. We describe a
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number of rank 2 and rank 3 representations explicitly and also discuss the representation
content which is consistent with the fusion product. In section 5 we discuss a second example
of general augmented cp,q models, the augmented Yang–Lee model at c2,5 = −22/5. We
actually rediscover all crucial features observed in the c2,3 = 0 model. These two examples
substantiate our conjecture of the general representation content and fusion rules for general
augmented cp,q models given in section 6. In section 7 we conclude and also give a short
outlook on the expected implications of these results. In appendix A we give the basis of states
which brings L0 into a Jordan diagonal form for the rank 3 representation R(3)(0, 1, 2, 5).
Finally, appendices B and C contain the explicit results for the fusion product calculation for
both examples c2,3 = 0 and c2,5 = −22/5.

2. How to calculate fusion products

Our calculations of fusion products are based on an algorithm first developed by Nahm [43] to
prove that the fusion of quasirational representations contains only finitely many quasirational
subrepresentations and, hence, that the category of quasirational representations is stable. In
[20], this procedure was generalized and it was shown how one can use this algorithm to get
(computationally usually sufficient) constraints to fix the field content of the fusion product at
a given level. Although the presentation of the algorithm is already very precise and thorough
in [20], we nevertheless want to give a short summary here in order to make this paper
self-contained. We will then present the specific properties of our particular implementation.

2.1. The Nahm algorithm

The nice and short presentation of the Nahm algorithm in [20] relies on the co-product formula.
For a holomorphic field of conformal weight h and mode expansion

S(w) =
∑

l∈Z+h

wl−hS−l ,

it is given by [40, 44]

�z,ζ (Sn) =
n∑

m=1−h

(
n + h − 1

m + h − 1

)
ζ n−m(Sm ⊗ 11) + ε

n∑
l=1−h

(
n + h − 1

l + h − 1

)
zn−l (11 ⊗ Sl)

= �̃z,ζ (Sn) ∀n � 1 − h

�z,ζ (S−n) =
∞∑

m=1−h

(
n + m − 1

m + h − 1

)
(−1)m+h−1ζ−(n+m)(Sm ⊗ 11)

+ ε

∞∑
l=n

(
l − h

n − h

)
(−z)l−n(11 ⊗ S−l ) ∀n � h

�̃z,ζ (S−n) =
∞∑

m=n

(
m − h

n − h

)
(−ζ )m−n(S−m ⊗ 11)

+ ε

∞∑
l=1−h

(
n + l − 1

l + h − 1

)
(−1)l+h−1z−(n+l)(11 ⊗ Sl) ∀n � h,

where ε = −1 if both Sm and the first field in the tensor product it is applied to are fermionic
and ε = +1 otherwise. Furthermore, z and ζ are the positions of the two fields of the tensor
product which this fused operator is applied to. Due to the symmetry of the fusion product
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there are two alternative ways of writing the co-multiplication, denoted by �z,ζ and �̃z,ζ .
Demanding that both �z,ζ and �̃z,ζ actually yield the same result we get the fusion space of
two representations Hi at positions zi, i = 1, 2,

H1 ⊗f H2 := (H1 ⊗ H2)/
(
�z1,z2 − �̃z1,z2

)
.

Throughout the paper we will use ⊗f to denote the fusion product of two representations.
In this paper, we will only look at representations w.r.t. the Virasoro algebra A(L) which

is generated by the modes Ln of the h(L) = 2 Virasoro field L, the holomorphic energy–
momentum tensor of conformal field theory. We need the following subalgebras:

A0
−(L) := 〈L−n|0 < n < h(L)〉

A−−(L) := 〈L−n|n � h(L)〉
A±(L) := 〈Ln| ± n > 0〉

as well as the subalgebra of words with a length of at least n,

An(L) =
〈

m∏
j=1

L
kj

−lj

∣∣∣∣∣
m∑

j=1

lj � n

〉
.

The essential information about a representationH is already encoded in its ‘special subspace’,
the quotient space

Hs := H/(A−−(L) H).

We also need the filtration of H given as quotient spaces

Hn := H/(An+1(L) H).

Especially for irreducible H this space is equal to the set of descendants up to level n.
We want to restrict ourselves to a certain type of representations, the ‘quasirational

representations’. We use the definition of a quasirational representation that it is a
representation with finite special subspace. For quasirational representations of the Virasoro
algebra it has been shown that [20, 43]

(H1 ⊗f H2)
n ⊂ Hs

1 ⊗ Hn
2 ∧ (H1 ⊗f H2)

n ⊂ Hn
1 ⊗ Hs

2. (1)

The proof uses the following Nahm algorithm which can be shown to map every state of the
tensor product H··

1 ⊗H··
2 to a state on the respective right-hand side in (1) in a finite number of

steps.
We present the algorithm only for the first equation in (1) as the other version works the

same way by symmetry of the fusion product. In the following, we regard the states of the
tensor product to be at positions (z1, z2) = (1, 0). The two steps of the Nahm algorithm are
then given by

(A1) A vector ψ1 ⊗ ψ2 ∈ H1 ⊗ H2 is rewritten in the form

ψ1 ⊗ ψ2 =
∑

i

ψi
1 ⊗ ψi

2 + �1,0(An+1(L))(H1 ⊗ H2),

with ψi
1 ∈ Hs

1. This can be achieved by the following recursive procedure.
The crucial step is to use the nullvector conditions on ψ1 to re-express it in the form

ψ1 =
∑

j

ψs
j +

∑
k

A−−χs
k ,
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with ψs
j , χ

s
k ∈ Hs

1. We still need to get rid of the A−− action on the χs
k . We use

the following formula derived from the co-multiplication formula and its translation
properties for m � n [20]:

(L−m ⊗ 11) =
n∑

l=m

(
l − h

m − h

)
�1,0(L−l )

− ε

∞∑
l=1−h

(
m + l − 1

m − h

)
(−1)h−m−1(11 ⊗ Ll) + �1,0(An+1(L)).

This formula actually enables us to replace the (L−m ⊗ 11) action in A−−χs
k ⊗ ψ2 by

terms where A0
− or even the identity acts on the left-hand vector of the tensor product.

This is true as in the range m � l � n the co-multiplication �1,0(L−l) is actually of
the simple form A0

− ⊗ 11 + 11 ⊗ A−−. Now we have to take the result and repeat this
procedure starting again with the re-expression of the first fields ψ1 in the tensor product.
A simple count of the strictly decreasing level of modes during the iteration shows that
this algorithm has to terminate [43].

(A2) This step has to be applied to each term of the resulting sum from step (A1) separately.
The input, a resulting tensor product from (A1) ψ1 ⊗ ψ2 ∈ Hs

1 ⊗ H2, is rewritten as

ψ1 ⊗ ψ2 =
∑

t

ψt
1 ⊗ ψt

2 + �1,0(An+1(L))(H1 ⊗ H2),

where now ψt
1 ∈ A0

−Hs
1 and ψt

2 ∈ Hn
2 .

This is achieved by repeatedly using

�1,0(L−I ) = (11 ⊗ L−l ) +
∑

k

ck

(
A0

− ⊗ L−Ik

)
for a word L−I = L−i1L−i2 · · · of negative Virasoro modes with level |I | and constant
ck . This recursion has to finish as the Virasoro monomials L−Ik

are of strictly lower level
|Ik| < |I |. This formula is just the result of the repeated use of the co-multiplication
formula for a monomial of modes of the same field and for the special coordinates
(z, ζ ) = (1, 0).

As we want to have the states in the fusion product which are projected to the subspace
(H1 ⊗f H2)

n we do not have to care about contributions �1,0(An+1(L))(H1 ⊗ H2). It is then
easy to see that iterated application of steps (A1) and (A2) will finally yield the required result
(1). This algorithm terminates in a finite number of steps as the number of modes on both
fields strictly decreases when re-expressing ψ1 in step (A1) using its nullvector condition and
does not increase in step (A2).

2.2. Constraints for the fusion algebra

By (1) we know that (H1 ⊗f H2)
n is actually embedded in the easily constructed space

F := Hs
1 ⊗Hn

2 . Hence, we want to find the full set of constraints which describes (H1 ⊗f H2)
n

in F .
The important idea of [20] was that one can find nontrivial constraints by applying An+1 to

states in F . We then have to use the Nahm algorithm in order to map the resulting descendant
states into our ‘standard’ space F . By definition these descendant states are divided out of
(H1 ⊗f H2)

n and, hence, are supposed to vanish. Thus, their mapping to F should evaluate
to zero—if we acquire non-trivial expressions this simply yields the desired constraints by
imposing their vanishing.
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This procedure is even improved if we use the nontrivial nullvector conditions on the
second field to replace the action of certain Virasoro monomials before performing the Nahm
algorithm. This introduces the information about the nullvector structure on the second
representation of the tensor product into the game; the information about the nullvector
structure on the first representation of the tensor product has already been used in the Nahm
algorithm itself.

As we noted during our calculation it even improves the situation to include the nullvector
conditions on the tensor factors in the space F itself.

In the following we will denote the level n at which we perform the computation with
L. Certainly, one cannot perform this calculation for all of AL+1. We, hence, restricted our
computation to the application of Virasoro monomials:〈

m∏
j=1

L
kj

−lj

∣∣∣∣∣
m∑

j=1

lj = L̃

〉

of equal level L̃. Usually we performed the calculation from L̃ = L+ 1 up to a maximal L̃max.
Both L and L̃max are given for the respective calculations in the appendix.

As we are limited to the calculation of a finite number of constraints this procedure is only
able to give a lower bound on the number of constraints and, hence, an upper bound on the
number of states in the fusion product at that level. On the other hand, these constraints seem
to be highly non-trivial such that already a very low L̃max > L, often even L̃max = L + 1,
is sufficient to gain all constraints which yield representations in a consistent fusion algebra.
This already worked very well in [20] for the cp,1 model case and as we will see it also works
very well in the general augmented cp,q model case.

Now, it is especially interesting to observe the action of positive Virasoro modes on
(H1 ⊗f H2)

L. The positive Virasoro modes, however, induce an action

Lm : (H1 ⊗f H2)
L → (H1 ⊗f H2)

L−m ∀m � L.

It is important to note that Lm map to a space of respective lower maximal level. Hence, we
need to construct all spaces of lower maximal level 0 � n < L. To achieve this we start with
(H1 ⊗f H2)

L and successively impose the constraints which arise in the above-described way
from the vanishing of the action of Virasoro monomials of level m with n < m � L on F .

2.3. Implementation for the cp,q models

We have implemented the main calculational tasks for this paper, especially the Nahm
algorithm and the calculation of the constraints, in C++ using the computer algebra package
GiNaC [45]. We constructed new classes for the algebraic objects fields, fieldmodes, products
of fieldmodes, descendant fields as well as tensor products of fields which are the basic
ingredients in this algorithm. (Some of the classes have already been used in [32].)

As GiNaC does not support factorization we used the Jordan-form package of the computer
algebra system Maple in order to get the Jordan diagonal form of the L0 matrix on the
resulting space as well as the matrices of base change. This Maple calculation is performed
via command-line during the run of the C++ programme.

As we will see in section 3 some irreducible representations in the general augmented cp,q

models have more than one nullvector (two, to be precise) which are completely independent,
i.e. such that none of these nullvectors can be written as a descendant of the others. Hence,
it is important to include both independent nullvectors into the nullvector lists which are
used for replacements in the calculation as explained above. This is needed to provide the full
information about the nullvector structure of the original representations which are to be fused.
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Sometimes one even needs to choose an L̃max large enough such that the second nullvector
can also become effective. The special subspace, however, is nevertheless determined by the
level l of the lowest nullvector:〈

ψ,L−1ψ,L2
−1ψ, . . . , Ll−1

−1 ψ
〉
.

Besides the fusion of two irreducible representations we also implemented the possibility
of fusing an irreducible representation with a rank 2 representation. Actually, this
generalization is quite straightforward. Instead of one state which generates an irreducible
representation we now need two generating states. However, we have to be careful because
the second generating state, the logarithmic partner, is not primary. Hence, we implemented
the indecomposable action on this second generating field as additional conditions proprietary
to that field (as already done in [32]). We also have to be careful to calculate the correct
nullvector structure which includes besides an ordinary nullvector on the primary field the
first logarithmic nullvector of the whole indecomposable representation. We have calculated
these logarithmic nullvectors using the algorithm described in [32].

In order to speed up the algorithm we widely used hashing tables. This measure actually
resulted in a quite equal use of computing time and memory (on a standard PC with up to 4GB
memory); calculations which are on the edge of using up the memory have run times between
half a day and a few days.

The performance of the implemented algorithm is, however, quite hard to benchmark as
it varies very much with different input and output. Concerning the input the computing time
rises with the level of the nullvectors—especially, the nullvector level of the first tensor factor
is crucial. We also need much more time to compute fusion products with representations on
weights that are strictly rational than corresponding ones with integer weights. And then, the
performance of course depends exponentially on L as well as L̃, although the dependence on
L is much stronger. Concerning the output the computational power of Maple is frequently
the limiting factor if we have a large resulting L0 matrix.

We have also checked the correct implementation of the algorithm by reproducing quite
some fusion rules of the cp,1 models given in [20]. In particular, we reproduced the Virasoro
matrices for the example given in the appendix of [20]. We also noted that the algorithm is
very sensitive and fragile such that only a small change in the parameters or the program yields
completely unreasonable results.

In contrast to the lowest cp,1 models we have to cover a much larger parameter space
with states of higher nullvectors already for the easiest general augmented cp,q model,
the augmented c2,3 = 0 model. We, hence, decided to calculate the fusion of the lowest
representations at L = 6 in order to be able to get results at the same L for a large parameter
space. For the higher fusion as well as the fusion with rank 2 representations we had to reduce
L. Details as well as the results are given in appendices B and C.

3. Virasoro representation theory for minimal models and their extensions

In this section we want to give a short overview about the representation theory of minimal
models [46, 47] as well as the augmented cp,1 models [20, 24].

In the following we will exclusively regard representations of the Virasoro algebra which
is spanned by the modes of the (holomorphic) h = 2 stress–energy tensor Ln obeying

[Lm,Ln] = (m − n)Lm+n +
c

12
(m − 1)m(m + 1)δm+n,0 m, n ∈ Z.
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To any highest weight h the application of the negative Virasoro modes Ln, n < 0, freely
generates the Verma module:

M(h) = {
L−n1 · · · L−nk

vh

∣∣n1 � · · · � nk > 0, k ∈ Z
+},

where vh is the highest weight state to h. In order to find the irreducible or at least
indecomposable representations we need to identify the largest true subrepresentations of
M(h) which decouple from the rest of the representation and need to construct the respective
factor module.

A subrepresentation can be generated from any singular vector v in M(h), i.e. a
vector which obeys Lpv = 0 ∀p > 0 and which is hence a highest weight state of its
own, and certainly we can also have unions of such representations. On the other hand, a
subrepresentation only decouples from the rest of the representation and can hence be factored
out if it consists of nullvectors, i.e. vectors which are orthogonal to all other vectors in the
Fock space of states w.r.t. the natural sesquilinear Shapovalov form on this space. As long
as we do not encounter any indecomposable structure in our representation singular vectors
are at the same time nullvectors and generate subrepresentations which are null in a Fock
space. However, the interrelation between singular vectors and nullvectors becomes much
more intricate as soon as we deal with indecomposable representations.

The Kac determinant actually parameterizes the relation between conformal charges c
and spectra of conformal weights hr,s at which we encounter nullvectors. It is hence an
ingenious tool to explore interesting conformal field theories with relatively few and small
representations. We are especially interested in this series of conformal field theories which
emerge from the study of the Kac determinant and which, hence, exhibit a rich nullvector
structure to be described below. These theories are parameterized by the conformal charges
(see e.g. [47])

c = cp,q = 1 − 6
p − q

pq
1 � p, q ∈ Z,

where p and q do not have a common divisor; their highest weight spectrum is given by the
weights in the Kac table

hr,s = (pr − qs)2 − (p − q)2

4pq
1 � r ∈ Z, 1 � s ∈ Z.

An extract of the (infinite) Kac table for c2,3 = 0 is given in table 1.
The so-called minimal models are a series of such conformal field theories which manage

to extract the smallest possible representation theory from the Kac table of some central charge
cp,q by relating all weights to some standard cell {(r, s)|1 � r < q, 1 � s < p} subject to the
relation [46, 47]

hr,s = hq−r,p−s . (2)

All larger higher weights are related to this standard cell by the addition of integers according
to the relations [46, 47]

hr,s = hr+q,s+p

hr,s + rs = hq+r,p−s = hq−r,p+s

hr,s + (q − r)(p − s) = hr,2p−s = h2q−r,s

(3)

as long as they are in the bulk and not on the border or corners of this standard cell Kac table,
i.e. as long as their indices do not obey r = iq or s = jp for some i, j ∈ Z.

These larger weights in the Kac table bulk are exactly the weights of the nullvector
descendants of the highest weights in the above standard cell. To be precise we actually find
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(r,s)

(kq+r , (−1)  s + p (1−(−1)  )/2)(q+r,p−s) (2q+r,s) (3q+r,p−s)

(r,4p−s)(r,2p+s)(r,2p−s)

(q,s) (2q,p−s) (3q,s) (4q,p−s)

((−1)  r + q (1−(−1)  )/2,(k+1)p)(r,p) (q−r,2p) (r,3p) (q−r,4p)

((k+1)q, (−1)  s + p (1−(−1)  )/2)

kk

(r , (−1)  s + kp + p (1−(−1)  )/2)k k

k

k

k

k

(a)

(b)

Figure 1. Nullvector embedding structure [47].

Table 1. Kac table for c2,3 = 0

s

1 2 3 4 5

1 0 5
8 2 33

8 7

2 0 1
8 1 21

8 5

3 1
3 − 1

24
1
3

35
24

10
3

4 1 1
8 0 5

8 2

5 2 5
8 0 1

8 1

r 6 10
3

35
24

1
3 − 1

24
1
3

7 5 21
8 1 1

8 0

8 7 33
8 2 5

8 0

9 28
3

143
24

10
3

35
24

1
3

10 12 65
8 5 21

8 1

11 15 85
8 7 33

8 2

that the maximal subrepresentation of M(h) for h in the bulk of the Kac table is generated
by two singular vectors v1, v2. The highest weight representations generated on v1 and
v2; however, each contain two subrepresentations which are again both generated from two
singular vectors; but actually both subrepresentations of M(v1) and M(v2) coincide. We
therefore arrive at an embedding structure or ‘embedding cascade’ of nullvectors as depicted
in figure 1(b) [47, 48] whose weights are exactly the integer shifted weights appearing in the
Kac table. The corresponding characters have been calculated in [49].

The irreducible representations V(r,s) with weights hr,s in this standard cell and the
described nullvector embedding structure have been shown to close under the following
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so-called BPZ fusion rules [46]:

V(r1,s1) ⊗f V(r2,s2) =
min(r1+r2−1,2q−r1−r2−1)∑

r3=|r1−r2|+1,step 2

min(s1+s2−1,2p−s1−s2−1)∑
s3=|s1−s2|+1,step 2

V(r3,s3),

where ⊗f denotes the fusion product. We note that the above excluded weights for r = iq or
s = jp with i, j ∈ Z, do not pop up in these fusion rules; they are hence simply ignored in
these minimal models.

On the other hand, augmenting the theory with representations beyond this standard cell,
especially with irreducible representations of the above excluded weights, has also led to the
construction of consistent CFTs. These contain representations with non-trivial Jordan blocks
and are thus examples of logarithmic CFTs. For the Virasoro representation theory of these
models one actually needs the full Kac table to describe its different representations, subject
only to relation (2).

To make the terminology more precise we will call, following [32], weights whose indices
obey r = iq and s = jp (i, j ∈ Z) ‘on the corners of the Kac table’ and weights whose
indices obey (exclusively) either r = iq or s = jp (i, j ∈ Z) ‘on the borders of the Kac
table’. All other weights which already appear in the minimal models we call ‘in the bulk
of the Kac table’. In table 1, the Kac table for c2,3 = 0, we have indicated the borders as
areas with lighter shade and the corners as areas with darker shade; the bulk consists of the
unshaded areas. Actually, it is just this inclusion of irreducible representations with weights
on the corners and the border which forces us to include states of weights of the whole Kac
table into the theory.

Only the well-studied models up to now are contained in the series cp,1, p = 2, 3, . . . (see
e.g. [9, 20–25]). But as these models do not contain any bulk in their Kac table, we do not expect
them to be generic; indeed as we will see in this paper the existence of representations with
weights in the Kac table bulk actually induces an even richer structure with indecomposable
representations up to rank 3.

The nullvector embedding structure stays of course the same for representations
corresponding to weights in the bulk. However, as already explained in [20], the nullvector
embedding structure actually collapses to a string for representations with weights on the
corners or on the border—as depicted in figure 1(a). It is very important to keep in mind
that the nullvectors corresponding to these higher weights in figure 1 are only true nullvectors
within representations that are generated as a Virasoro module from one (!) singular vector, i.e.
irreducible representations. This picture changes as soon as there appears an indecomposable
structure within the representation [20, 32]. Nevertheless these vectors keep their prominent
role even within the higher rank representations.

For later use we need to define the notion of a ‘weight chain’ for conformal weights
on the border or in the bulk. These weight chains are supposed to be a handy storage
of information about the weights on successive embedding levels in the above-discussed
embedding structures. A weight chain for weights on the border is a list of all weights which
differ just by integers, ordered by size without multiplicity (see figure 1(a)):

W border
(r,p) := {hr,p, hq−r,2p, hr,3p, . . .} ∀r < q,

W border
(q,s) := {hq,s, h2q,p−s , h3q,s , . . .} ∀s < p.

To form a weight chain for weights in the bulk we take a likewise list of weights differing
just by integers, ordered by size without multiplicity. Then we map this list into a list of sets;
the first set just consisting of the lowest weight, then every next set consisting of the next two
weights. Regarding figure 1(b) we get

W bulk
(r,s) := {hr,s, {hr,2p−s , hq+r,p−s}, {hr,2p+s , h2q+r,s}, . . .} ∀r < q, s < p.
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Table 2. Specific properties of rank 2 representations in c2,3 = 0.

Level of Level of first Level of first
β1 β2 log. partner nullvector log. nullvector Type

R(2)(5/8, 5/8) – – 0 2 10 A
R(2)(1/3, 1/3) – – 0 3 9 A
R(2)(1/8, 1/8) – – 0 4 8 A
R(2)(5/8, 21/8) −5 – 2 10 16 B
R(2)(1/3, 10/3) 140/27 – 3 9 18 B
R(2)(1/8, 33/8) −700/81 – 4 8 20 B

R(2)(0, 1)5 1/3 – 1 2 7 C
R(2)(0, 1)7 −1/2 – 1 2 5 D
R(2)(0, 2)5 – −5/8 2 1 7 E
R(2)(0, 2)7 – 5/6 2 1 5 F
R(2)(1, 5) 2800/9 – 4 6 14 C
R(2)(1, 7) 30800/27 1100/9 6 4 14 E
R(2)(2, 5) −420 – 3 5 10 D
R(2)(2, 7) −880 −440/3 5 3 10 F

In order to understand the generic features of augmented cp,q models we will study the
two easiest candidates for augmented models with non-empty bulk of the Kac table in this
paper, the augmented c2,3 = 0 model with Kac table given in table 1 as well as the augmented
Yang–Lee model with c2,5 = −22/5. Possible candidates for higher rank representations
in the augmented c2,3 = 0 model have already been explored in [32] by the calculation of
logarithmic nullvectors. We will show that these calculations are consistent with the findings
in this paper and will furthermore use these calculational tools for the explicit computation of
fusion with rank 2 representations.

For the cp,1 models it was shown that they actually have a larger W algebra as symmetry
algebra, the triplet algebra W(2, 2p − 1, 2p − 1, 2p − 1). We have strong hints that such
a larger W algebra is also the underlying symmetry algebra of the generic augmented cp,q

models [27]. The effective Kac table of these theories can then again be reduced to a standard
cell, which is though larger as their minimal model counterpart. The standard cell is then
given by {(r, s)|1 � r < nq, 1 � s < np} with n usually an odd integer larger than 1, e.g. 3
for the above-mentioned triplet algebras of the cp,1 models. In this paper, however, we want
to concentrate on the pure Virasoro representation theory and, hence, do not restrict our Kac
table in any way.

4. Explicit discussion of the augmented c2, 3 = 0 model

In this section, we explicitly discuss our calculations of the fusion product of representations
in the c2,3 = 0 augmented model which lead us to the conjectured general fusion rules of
section 6. We present examples for the newly appearing higher rank representations and also
elaborate the consistency conditions for the fusion product in this case.

4.1. Higher rank representations

4.1.1. Representations of rank 2. Table 2 gives an overview of the specific properties of all
rank 2 representations we have calculated for this model. The two parameters of the rank 2
representation R(2) give the lowest weight and the weight of the logarithmic partner in this
representation, i.e. the weights of the two states which generate this representation. The
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Figure 2. Rank 2 representations for weights on the border.

additional index will be explained when we discuss these particular representations (see p 23).
Analogously, we denote an irreducible representation generated by a highest weight state of
weight h by V(h).

The first block contains the rank 2 representations to the three different weight chains
lying on the border of the Kac table, i.e. W border

(1,2) := {5/8, 21/8, 85/8, . . .},W border
(3,1) :=

{1/3, 10/3, 28/3, . . .} and W border
(2,2) := {1/8, 33/8, 65/8, . . .}. Both different types of rank 2

representations are depicted in figure 2. They actually exhibit precisely the same structure as
the rank 2 representations of the augmented cp,1 models described in [20]. This has already
been conjectured in [32] by the calculation of their first logarithmic nullvectors. Throughout
this paper we stick to the graphical conventions of previous publications, see e.g. [20, 32].
As, e.g., in figure 2 we take black dots to denote (sub)singular vectors which are not null,
crosses to denote nullvectors, horizontal arrows denote an indecomposable action (of L0),
arrows pointing upwards to denote a descendant relation and arrows pointing downwards to
denote a non-trivial action of positive Virasoro modes. Furthermore, we indicate the levels on
the right-hand side of each picture.

The first three representations in table 2 are the ground-state rank 2 representation
visualized in figure 2(A). They exhibit an indecomposable Jordan cell already on the zeroth
level. In this case the logarithmic partner state |h; 1〉 of the irreducible ground state |h; 0〉 is
logarithmic primary, i.e. it is primary with the exception of an indecomposable action of L0

L0|h; 1〉 = h|h; 1〉 + |h; 0〉.
|h; 0〉 actually spans an irreducible subrepresentation; its first nullvector (depicted as a cross
in the figure) is hence found on the level of the next weight h + l in the corresponding weight
chain. The descendants of |h; 1〉, however, do not form to give a nullvector at h + l. In order
to find the first nullvector involving descendants of |h; 1〉 we have to go one weight further
in the weight chain. These representations are uniquely generated by the two ground states
|h; i〉, i = 0, 1; there is no need of an additional parameter to describe them.

The next three representations in table 2 are the first excited representations of these three
weight chains depicted in figure 2(B). The logarithmic partner state |h + l; 1〉 lies on that level
l at which we would expect the first nullvector of the ground state |h〉 if the ground state were
to span an irreducible representation. Hence, the subrepresentation generated by |h〉 is not
irreducible, but only indecomposable. Actually the indecomposable action of L0 just maps
|h + l; 1〉 to the singular level l descendant of |h〉 which we call |h + l; 0〉 and which normally
would be the first nullvector of an irreducible h representation:

L0|h + l; 1〉 = (h + l)|h + l; 1〉 + |h + l; 0〉.
|h + l; 0〉, on the other hand, spans an irreducible subrepresentation and yields its first nullvector
on the level of the second weight after h in the weight chain, called h + m. In order to find
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Figure 3. Rank 2 representations for weights in the bulk.

the first logarithmic nullvector we have to go even one weight further in the weight chain to
h + n. Now, the logarithmic partner field can certainly not be logarithmic primary; but as
discussed in [20] it can still be made to at least vanish under all Lp, p > 2. This induces one
characteristic parameter β = β1 in this representation due to the action of L1; we take β to
parameterize the following equation:

(L1)
l|h + l; 1〉 = β|h〉.

The structure visualized in figure 2(B) is actually thought to be the generic type of rank 2
representation for weights on the border. It should be found for every two adjacent weights in
a border weight chain. As in the cp,1 model case the representations of the type depicted in
figure 2(A) can only be found for the first and hence the lowest weight of a weight chain.
Furthermore, we want to stress that we can think of these rank 2 representations as being
constructed by indecomposably connecting several irreducible representations. This is already
suggested by figures 2(A) and (B) where the black dots represent these ‘towers of states’ which
have been irreducible representations before their indecomposable connection to a rank 2
representation. Generically, these towers of states are not irreducible subrepresentations any
more, but they resemble their irreducible counterparts in terms of number of states and singular
vectors. This point of view has also been worked out in [20] for rank 2 representations in the
augmented cp,1 models.

We have also successfully checked for the existence of the first logarithmic nullvectors at
the levels given in table 2 using the algorithm of [32]. Even the level 20 logarithmic nullvector
was now accessible to our computational power due to our explicit knowledge of β.

The second block of table 2 contains the specific properties of the lowest rank 2
representations which we found for weights in the weight chain of the Kac table bulk, i.e.
W bulk

(1,1) := {{0}, {1, 2}, {5, 7}, . . .}. There are four different types of rank 2 representations
depicted in figure 3 which appear to be a generalization of the situation on the border for
the case of figure 2(B). This generalization has to take into account the more complicated
embedding structure of representations with weights in the bulk—the linear picture of
figure 1(a) has to be replaced by the two string twisted picture of figure 1(b). As we now have
two possible nullvectors on every step of the weight chain, of which only one is rendered non-
null by the existence of a logarithmic partner state of the same level, we actually also encounter
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cases E and F where there is a true nullvector on a level lower than the logarithmic partner
state. This is new and makes the description of these particular cases more complicated.

Let us first describe the cases C and D. Starting with the lowest weight state |h〉 the first
possible nullvectors are given by the next set in the weight chain at levels l and m. In the
present cases the corresponding singular descendant h + l; 0〉 on |h〉 at the lower of these two
levels l is rendered to be non-null by the existence of a logarithmic partner state |h + l; 1〉. The
indecomposable action of L0 on |h + l; 1〉 is again given by

L0|h + l; 1〉 = (h + l)|h + l; 1〉 + |h + l; 0〉.
Furthermore, the argument of [20] still applies that due to the absence of a nullvector on |h〉
on a level lower than the Jordan cell we can transform |h + l; 1〉 by the addition of level l
descendants of |h〉 such that it is annihilated by Lp∀p � 2. Then L1 maps |h + l; 1〉 to the
unique level l −1 descendant of |h〉 which is annihilated by Lp∀p � 2. As for representations
with weights on the border we take the resulting one parameter β = β1 to parameterize the
equation

(L1)
l|h + l; 1〉 = β|h〉.

The second state corresponding to this set in the weight chain, the one at level m, actually stays
null in the rank 2 representation. This fixes the nullvector structure on |h〉 as the embedding
structure of figure 1(b) tells us that the nullvectors of the next set in the weight chain, at levels
n and r, are joint descendants of the states corresponding to the previous set of weights. But as
the singular state at level m is already a nullvector, the singular states at levels n and r have to be
null as well. The situation is somewhat different for the descendants of the logarithmic partner
as |h + l; 1〉 is the starting point of its embedding structure. The cases C and D correspond to
the two possibilities of having the first logarithmic nullvector on levels r and n, respectively.
There is, however, no additional nullvector at the respective other weight. Examples for the
case C are R(2)(0, 1)5 and R(2)(1, 5), for the case D are R(2)(0, 1)7 and R(2)(2, 5). Again,
the lowest representations play a special role as both cases are realized for lowest weight 0.
Hence, we indicate the level of the logarithmic descendant which is promoted to be non-null
as an index. It is important to note, however, that both cases are already distinguished by their
different β values.

Let us turn to the cases E and F. These exhibit very much the same structure as the cases
C and D. The crucial difference is the existence of a nullvector already on a level lower than
the level of the logarithmic partner. This fact prevents us from applying the above argument
how to describe the representation by only one parameter. The special cases of R(2)(0, 2)5 and
R(2)(0, 2)7 can nevertheless be reduced to one parameter quite easily. As there is no non-null
descendant of the lowest weight state |0〉 at level 1 the only positive Virasoro mode which can
map the logarithmic partner |2; 1〉 to a non-zero state is L2. Hence, we take the one parameter
β = β2 to parameterize the equation

L2|2; 1〉 = β|0〉.
This behaviour is, however, not generic. We find that we need at least two parameters to
describe these two kinds of rank 2 representations in general. To see this let us regard all
normal ordered monomials in Virasoro modes of length m. We are able to transform |h+m; 1〉
by addition of level m descendants of |h〉 in such a way that only the application of two such
Virasoro monomials does not annihilate |h + m; 1〉. In particular we have the followings.

• For R(2)(1, 7), we find the two parameters β1 = 30800/27 and β2 = 1100/9
parameterizing

(L1)
6|7; 1〉 = β1|1〉 (L1)

3L3|7; 1〉 = β2|1〉.
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R(2)(1, 7) has been parameterized in such a way that the monomials (L1)
6 and (L1)

3L3

are the only ones with a non-trivial action on |7; 1〉. This yields the following mappings
of single Virasoro modes:

L1|7; 1〉 = 11
729

(
857
2 L−5 − 473L−4L−1 − 721L−3L−2 + 4279

12 L−3L
2
−1

+ 809
2 L2

−2L−1 − 1295
12 L−2L

3
−1

) |1〉
L2|7; 1〉 = 0

L3|7; 1〉 = 275
324

(
L3

−1 + 12L−2L−1 − 24L−3
) |1〉

Lp|7; 1〉 = 0 ∀p � 4.

• For R(2)(2, 7), the two parameters are β1 = −880 and β2 = −440/3 parameterizing

(L1)
5|7; 1〉 = β1|2〉

(L1)
2L3|7; 1〉 = β2|2〉.

This yields the following mappings of single Virasoro modes:

L1|7; 1〉 = 5
17

(− 143
3 L−4 + 44

3 L−3L−1 + 49
3 L2

−2 − 6L−2L
2
−1

) |2〉
L2|7; 1〉 = 0

L3|7; 1〉 = − 20
3

(
L2

−1 − 3
2L−2

) |2〉
Lp|7; 1〉 = 0 ∀p � 4.

In both cases L3 maps |h +m; 1〉 to a multiple of the unique descendant of |h〉 on the level
l − 1, which is annihilated by Lp∀p � 2.

We conjecture that it actually suffices to have two parameters in order to characterize
rank 2 representations of types E and F. As we have a nullvector already on the lower level
l this unique state on the level m − 1, which is annihilated by Lp∀p � 2, is a descendant of
this nullvector. Hence, we want to lift the restrictions by incorporating one further non-zero
mapping, the mapping by Lm−(l−1) to the unique state on the level l−1 which is annihilated by
Lp∀p � 2, in order to ensure that we do not map into pure descendants of the lower nullvector.
This is, indeed, equivalent to demanding that the application of all normal ordered positive
Virasoro monomials of length m annihilates |h + m; 1〉 except for Lm

1 and Ll−1
1 Lm−(l−1).

Again, we want to stress that also these rank 2 representations can be thought of to be
constructed by an indecomposable connection of several (to be precise four) irreducible
representations. As for the rank 2 representations on the border the former irreducible
representations are signified by the black dots in the corresponding figures 3(C)–(F).

For all bulk rank 2 representations listed in table 2, we were able to see the level of the
first logarithmic nullvector already in the calculated fusion spectrum. We also confirmed this
lowest logarithmic nullvector using the algorithm of [32]. It is remarkable to see that for
the bulk rank 2 representations R(2)(0, 1)i and R(2)(0, 2)i, i = 5, 7, we encounter the first
nullvectors already on lower levels than the ones proposed in [32]. However, the solutions in
[32] are given for general β; it is only for the special βs in table 2 that we encounter solutions
even on lower levels.

4.1.2. Representations of rank 3. Representations of rank 3 only appear for weights in the
bulk. In the following we will discuss the three lowest examples explicitly.

R(3)(0, 0, 1, 1). Although we only encounter a rank 3 indecomposable structure in this
representation, we nevertheless need four states to generate it. We will see that this is necessary
and natural by two different ways of visualizing the nullvector structure of R(3)(0, 0, 1, 1).
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Figure 4. Two ways to visualize R(3)(0, 0, 1, 1).

The first way starts with the Jordan diagonalization of the representation and is shown in
figure 4(G1). We have two ground states |0; i〉, i = 0, 1, at level 0 which are interrelated by
the rank 2 indecomposable action of L0:

L0|0; 1〉 = |0; 0〉 L0|0; 0〉 = 0.

On level 1, the level of the first possible nullvector on |0; i〉, the Jordan cell is enhanced to
rank 3:

L0|1; 2〉 = |1; 2〉 + |1; 1〉
L0|1; 1〉 = |1; 1〉 + |1; 0〉
L0|1; 0〉 = |1; 0〉.

A further fourth state of weight 1 decouples in the L0 action,

L0|1; 3〉′ = |1; 3〉′,
but this seeming decoupling is deceiving as the singular descendant of |0; 1〉 is actually
composed of the sum of the Jordan cell state |1; 1〉 and the ‘decoupling’ state |1; 3〉′; indeed
the action of L−1 on |0; i〉, i = 0, 1, is given by

L−1|0; 0〉 = |1; 0〉
L−1|0; 1〉 = |1; 1〉 + |1; 3〉′.

The further nullvector structure is also depicted in figure 4(G1). We were able to calculate all
states up to level 6 explicitly. The total number of states is also attainable for level 7, but in an
indirect way via the second view on this representation to be discussed below. We give a list
of the total number of states in table 3; we split the number according to the position of the
state in the Jordan cell, which we also call the ‘Jordan level’ of that state in the cell (following
[9] the enumeration starts with 0). For example, for level 5 there are four rank 3 Jordan cells,
one additional rank 2 Jordan cell plus the four which are subcells of a rank 3 cell as well as
six additional single eigenvalues.

Now we find one nullvector on level 2, the singular descendant L−2|0; 0〉. This nullvector
has two singular descendants on levels 5 and 7 which are also nullvectors of |1; 0〉 = L−1|0; 0〉
due to the bulk embedding structure. The ‘decoupling’ state |1; 3〉′ generates an irreducible
representation with null singular vectors on levels 5 and 7. These vectors as well as their
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Table 3. Number of states for R(3)(0, 0, 1, 1).

Number of states

Jordan Jordan Jordan Total number New null
Level level 0 level 1 level 2 of state subrepresentations

0 1 1 – 2 –
1 2 1 1 4 –
2 3 1 1 5 1
3 5 2 2 9 –
4 8 3 3 14 –
5 11 5 4 20 2
6 17 7 6 30 –
7 23? 11? 8? 42? 2

descendants are the only nullvectors up to level 7. We do not yet encounter a logarithmic
nullvector up to this level.

In a second way of visualizing this representation we can actually view it as an
indecomposable combination of rank 2 representations whose structure is given in much
the same way as in figure 2(A); we only have to replace the two lowest black dots by the two
rank 2 representations R(2)(0, 1)5 and the higher by R(2)(2, 7). Surprisingly, we can also put
R(3)(0, 0, 1, 1) in a likewise form with the lower two black dots replaced by R(2)(0, 1)7 and
the higher with R(2)(2, 5). A mathematical more precise notion of this procedure is that of
an extension of a representation by another. The case of general rank two indecomposable
representations, so-called staggered modules, is described in this way in [22] as an extension
of an irreducible highest weight representation by another. This construction generalizes to
extensions of a staggered module by another. One can read off these two Virasoro staggered
modules from our data, but this is, at least on the level of Virasoro representations, not
unique. Indeed, it appears that R(3)(0, 0, 1, 1) can be viewed as an extension of R(2)(0, 1)5

by R(2)(0, 1)5 or as an extension of R(2)(0, 1)7 by R(2)(0, 1)7. A detailed analysis of this
extension structure along the lines set out in [22] is beyond the scope of our paper. However,
let us see how this comes about on the lowest levels of the rank 3 representation.

We choose the setup for the lowest levels as depicted in figure 4G2: we have two
separate rank 2 representations with lowest states |0; 0〉 and |0; 1〉, respectively. |0; 0〉 has a
logarithmic partner at level 1, called m1, to its singular descendant m0 := L−1|0; 0〉 = |1; 0〉.
Likewise, |0; 1〉 has a logarithmic partner at level 1, called m3, to its singular descendant
m2 := L−1|0; 1〉 = |1; 1〉 + |1; 3〉′. Furthermore, both representations are connected by the
indecomposable L0 action on |0; 1〉. This directly promotes to the indecomposable action of
L0 on their L−1 descendants

L0m0 = |1; 0〉 L0m2 = |1; 2〉 + |1; 0〉
as well as the consistent L1 action

L1m0 = 0 L1m2 = 2|0; 0〉.
Now we still have to check whether we can find m1 and m3 which fit this setup. We express m1

and m3 as linear combinations of the level 1 states |1; j 〉, j = 1, 2, 3 and impose the following
conditions and parameters:

• L0m1 = m1 + m0,
• L1m1 = ξ1|0; 0〉,
• L0m3 = m3 + m2 + rm1 + sm0,
• L1m3 = ξ2|0; 1〉 + ξ3|0; 0〉.
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We find that s and ξ3 are actually irrelevant parameters which can be set to 0 using the
residual freedom. r and ξ2 are functions of ξ1. Hence, there is one free parameter in this
representation. It is most useful to just express r in terms of ξ1 and then study the relation
between ξ1 and ξ2 as these parameters are the defining parameters of the rank 2 representations
we started with. The relation is given by

(12ξ1 + 1)(12ξ2 + 1) = 25.

There are only two solutions which fit the bulk rank 2 spectrum discussed above; they also
seem to be the most natural ones:

ξ1 = ξ2 = − 1
2 ξ1 = ξ2 = 1

3 .

These two solutions exactly give the lower level rank 2 representations which we proposed
above to be the two lower dots in the figure 2(A) like setup. In order to get the respective
representation corresponding to the higher dot of figure 2(A) we just have to count the number
of states and compare these. As this higher rank 2 representation only ‘fills up’ states which
would be null in a pure rank 2 setting, but are not null in this rank 3 setting (e.g. L−2|0; 1〉),
we do not need any further parameters to describe this representation.

Therefore, there is only the one additional parameter r besides the parameters of the
ingredient rank 2 representations, which we need to describe R(3)(0, 0, 1, 1), which is given
in terms of ξ1:

r = −25

12ξ1 + 1
.

Finally, we still need to explain how to determine the number of states for level 7 (as in
table 3). If we want to use the total number of states to determine this higher black dot in the
above setting, we can decide this question knowing the total number of states ofR(3)(0, 0, 1, 1)

up to level 5 (R(2)(2, 5) and R(2)(2, 5) already differ at their third level). But then, we can in
turn easily use this setting in order to determine the number of states for any higher level.

R(3)(0, 0, 2, 2). The rank 3 representation R(3)(0, 0, 2, 2) looks much the same as the previous
one. Due to the nullvector at level 1 which appears at a lower level than the final rank 3 structure
we have to take some more care in fixing the freedom.

There are again two ways to decompose this rank 3 representation into rank 2
representations. Either we find twice R(2)(0, 2)5 and R(2)(1, 7) or twice R(2)(0, 2)7 and
R(2)(1, 5).

R(3)(0, 1, 2, 5). The rank 3 representation R(3)(0, 1, 2, 5) is the only higher rank 3
representation which was accessible to our calculations up to that level at which the rank
3 structure appears. From our knowledge of the other towers of representations it should
nevertheless be fair to conjecture that most of the generic features of rank 3 representations in
these cp,q models are already visible in this example.

In table 4, we list the number of states as calculated. We have also included the basis of
states which brings L0 into a Jordan diagonal form in appendix A.

Again we find two ways to visualize the embedding structure. The Jordan diagonalization
of L0 gives an embedding structure of the form depicted in figure 5H1. As the situation is even
more complicated as for R(3)(0, 0, 1, 1) we have labelled the states according to the indexed
basis which is chosen by the computer and listed in appendix A. We can see that both singular
vectors on n0, i.e. n4 at level 1 and n23 at level 2, are incorporated into rank 2 Jordan cells.
But nevertheless we do not encounter a first rank 3 cell until level 5. The first vector of this
rank 3 Jordan cell, n16, which is a true eigenvector, is given by the joint singular vector on n4

and n23. As in the R(3)(0, 0, 1, 1) case there is a vector at level 5 which seems to decouple
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Figure 5. Two ways to visualize R(3)(0, 1, 2, 5).

Table 4. Number of states for R(3)(0, 1, 2, 5).

Number of states

Jordan Jordan Jordan Total number New null
Level level 0 level 1 level 2 of state subrepresentations

0 1 – – 1 –
1 1 1 – 2 –
2 2 2 – 4 –
3 3 3 – 6 –
4 5 5 – 10 –
5 8 7 1 16 –

from the representation. But again this decoupling in terms of the L0 action is deceiving as
this vector is a sum of descendants of n5 and n24 (see appendix A for the explicit expressions).
Hence, as for R(3)(0, 0, 1, 1) this rank 3 representation needs four generating states.

As a second way to visualize this representation, we conjecture that we can construct
this representation by an indecomposable combination of the four rank 2 representations
R(2)(0, 1)7, twice R(2)(2, 5) and R(2)(7, 12) assembled as in figure 2(B); as before we replace
the black dots in figure 2(B) by the respective rank 2 representations. The picture that emerges
is depicted in figure 5(H2). What are the hints at such a deconstruction of R(3)(0, 1, 2, 5) ?
First of all we find that

L1n5 = − 1
2n0.

This equation reproduces the defining β parameter of R(2)(0, 1)7. Hence, the two lowest
generating states of R(3)(0, 1, 2, 5), n0 and n5, generate a tower of states which resembles the
rank 2 representation R(2)(0, 1)7. The only difference to a true subrepresentation R(2)(0, 1)7

is that the usual first nullvector on n0, n23 = L−2n0, is rendered non-null by its inclusion into
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an indecomposable rank 2 cell with

L0n23 = 2n23

L0n24 = 2n24 + n23.
(4)

In the R(3)(0, 0, 1, 1) case, we have seen an example that the indecomposable connection
of two rank 2 cells of the same type of rank 2 representation produces a rank 3 cell and a
seemingly decoupling further state. But this is exactly the structure we discover in this case
at level 5—a rank 3 cell,

L0n16 = 2n16

L0n17 = 2n17 + n16

L0n18 = 2n18 + n17,

as well as a seemingly decoupling state n70. Hence, we conjecture that n23 and n24 are actually
both the lower generators of towers of states which both resemble R(2)(2, 5), but which are
indecomposably connected according to equation (4). This structure up to level 5 is in perfect
agreement with the total count of states given in table 4. Unfortunately, we cannot say anything
about the embedding structure or the count of states for higher levels and, thus, the inclusion
of the fourth rank 2 representation R(2)(7, 12) is highly conjectural. It is only lead by the
intuition that in any rank 2 structure the first nullvectors on the true eigenstate have to have
non-null corresponding states on the side of the logarithmic partner due to the non-degeneracy
of the Shapovalov form.

There is, however, one further way of looking at the situation. Let us regard the fusion
equation

V(1/3) ⊗f R(2)(1, 5) = R(3)(0, 1, 2, 5).

But as described before we can also view R(2)(1, 5) as a combination of four towers of
states which resemble their irreducible counterparts in terms of numbers of states and singular
vectors but which are indecomposably connected to form R(2)(1, 5). In this case, we can
think of R(2)(1, 5) as being constructed by indecomposably connecting V(1), twice V(5)

as well as V(12). But the fusion of its single constituents should be consistent with the
fusion of R(2)(1, 5) itself. Therefore, inspecting the fusion rules (the first two calculated, see
appendix B, the third inferred from the fusion rules of section 6)

V(1/3) ⊗f V(1) = R(2)(0, 1)7

V(1/3) ⊗f V(5) = R(2)(2, 5)

V(1/3) ⊗f V(12) = R(2)(7, 12),

we are again led to the conjecture that we can build R(3)(0, 1, 2, 5) by indecomposably
connecting R(2)(0, 1)7, twice R(2)(2, 5) and R(2)(7, 12).

A similar inspection of the fusion equation

V(5/8) ⊗f R(2)(5/8, 21/8) = R(3)(0, 1, 2, 5)

leads to the conjecture that we can also construct R(3)(0, 1, 2, 5) by indecomposably
connecting R(2)(0, 2)7, twice R(2)(1, 5) and R(2)(7, 15). This is also in perfect agreement
with the total count of states up to the accessible level 5 and, furthermore, a nice generalization
of the R(3)(0, 0, 1, 1) case, which can also be constructed out of rank 2 representations in two
ways; indeed, as in the R(3)(0, 0, 1, 1), case R(3)(0, 1, 2, 5) can be viewed as an extension
either of R(2)(0, 1)7 by R(2, 5) or as an extension of R(2)(0, 2)7 by R(1, 5)—a detailed
analysis of this more precise mathematical description is, however, again beyond the scope of
this paper.
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Let us have an explicit view at the embedding of the lowest rank 2 representation
R(2)(0, 2)7 which is a bit more tricky this time. For the non-trivial action of the positive
Virasoro modes on the new state n24 at level 2 we find (after removal of some residual
freedom)

L1n24 = 3n5 L2n24 = − 17
12n0. (5)

This state n24 is the logarithmic partner of the n0 descendant n23 = L−2n0. From the
description of R(2)(0, 2)7, we are used to these two states spanning the lowest Jordan cell. But
the non-trivial mapping of L1 in equation (5) is in clear contradiction to R(2)(0, 2)7 having a
first nullvector and, hence, no state at level 1. Furthermore, we do not recover the correct β

value in equation (5). But we have forgotten to take into account that due to the absence of
this nullvector on level 1 the level 2 singular vector has shifted to

n′
23 = n23 − 3

2n4.

The correct logarithmic partner to n′
23 is given by

n′
24 = n24 + 9

8n4 − 3
2n5.

Indeed, if we calculate the action of the positive Virasoro modes for n′
24 we find the desired

properties:

L1n
′
24 = 0 L2n

′
24 = 5

6n0.

R(3)(0, 1, 2, 7). Although the rank 3 representation R(3)(0, 1, 2, 7) is not accessible to our
computational power, we can nevertheless tackle its decomposition in the same way as the last
method in the preceding case. For this argument, we take the appearances of R(3)(0, 1, 2, 7)

for granted as conjectured in appendix B. Then looking at the fusion equation

V(5/8) ⊗f R(2)(1/8, 33/8) = R(3)(0, 1, 2, 7)

we conjecture that R(3)(0, 1, 2, 7) can be constructed by indecomposably connecting the four
rank 2 representations R(2)(0, 1)5, twice R(2)(2, 7) and R(2)(5, 12). Similarly, looking at

V(1/3) ⊗f R(2)(1/3, 10/3) = R(3)(0, 1, 2, 7) ⊕ R(2)(1/3, 10/3),

we can think ofR(3)(0, 1, 2, 7) to be composed ofR(2)(0, 2)5, twiceR(2)(1, 7) andR(2)(5, 15).

4.2. Explicit calculation of the fusion products

We have calculated the fusion products of a large variety of representations in the augmented
c2,3 = 0 model. To do this, we have used the Nahm algorithm described in section 2 to
determine the fusion product of irreducible and rank 1 representations with themselves as
well as with the lowest lying and first excited rank 2 representations. In order to show that
the fusion algebra indeed closes, we have used the symmetry and associativity of the fusion
product and calculated the fusion of higher rank representations. We have also used these
conditions in order to perform consistency checks as described in the following subsection.
The results itself are listed in appendix B.

In section 6, we sketch a generalization of the BPZ and cp,1 fusion rules which is applicable
to all augmented cp,q models and, hence, also describes the fusion of this model in a unifying
way. But as these general rules look quite complex it is also possible to find simplified versions
for the augmented c2,3 = 0 model, e.g.

V(5/8) ⊗f W(1/3|i) = W(−1/24|i),
where W(h|i) signifies the ith element in the weight chain starting with h.
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4.3. Consistency of fusion products

A consistent fusion product has to obey two main properties, symmetry and associativity.
We have used both these properties for consistency checks of the chosen spectrum and the
performed calculation as well as for the determination of the fusion product of higher rank
representations.

The main implication of this consistency, however, is the absence of an irreducible
representation of weight h = 0 in the spectrum, call it V(0). The representation V(0) would
be endowed with nullvectors on levels 1 and 2 and would, hence, only consist of the one ground
state. Performing the Nahm algorithm of section 2, we get the following fusion products:

V(0) ⊗f V(0) = V(0) (6)

V(0) ⊗f V(h) = 0 ∀h ∈ {
5
8 , 1

3 , 1
8 , −1

24 , 33
8 , 10

3 , 21
8 , 2, 1, 7, 5

}
. (7)

On the other hand, using just equations (7) and the fusion rules of appendix B we arrive at

(V(0) ⊗f (V(2) ⊗f V(2))) = (V(0) ⊗f V(0)) ⊕ (V(0) ⊗f V(2))

= V(0) ⊗f V(0)

as well as by associativity at

((V(0) ⊗f V(2)) ⊗f V(2)) = 0 ⊗f V(2)

= 0.

(Similar equations can be obtained involving the other V(h) with h from (7).) This argument
thus implies

V(0) ⊗f V(0) = 0.

But this is in clear contradiction to (6). Fortunately, however, V(0) completely decouples from
the rest of the fusion (as one can see in appendix B). Hence, the contradiction is easily solved
by simply excluding V(0) from the spectrum.

On the other hand, the representations R(2)(0, 1)5 and R(2)(0, 1)7 contain a state
with weight 0 which generates a subrepresentation R(1)(0)1. This subrepresentation is
indecomposable but neither is it irreducible nor does it exhibit any higher rank behaviour.
Let us emphasize that it is only physically meaningful as a subrepresentation because it needs
the embedding into the rank 2 representation in order not to have nullvectors at both levels 1
and 2.1 But, nevertheless, being a subrepresentation of a representation in the spectrum it is
part of the spectrum, too. Similarly, the representations R(2)(0, 2)5 and R(2)(0, 2)7 contain a
rank 1 subrepresentation R(1)(0)2. However, looking at the fusion rules which we calculate
for these two rank 1 representations (see appendix B), especially

R(1)(0)2 ⊗f V(h) = V(h) ∀h ∈ {
5
8 , 1

3 , 1
8 , −1

24 , 33
8 , 10

3 , 21
8 , 2, 1, 7, 5

}
,

we see that the situation is after all not really too bad: R(1)(0)2 behaves much more like the
true vacuum representation as the expected V(0) (only regard the behaviour in (7)), it simply
acts as the monoidal unit for the fusion product.

We now want to present one nice example how to use the symmetry and associativity of the
fusion product in order to determine the higher rank fusion. Let us assume that we already know
the fusion of irreducible representations with themselves as well as with rank 2 representations,

1 Without its embedding in a higher rank structure the collection of all Virasoro descendants on an h = 0 state
certainly is a valid representation, the Verma module, but the subrepresentations generated by the two nullvectors at
level 1 and 2 do not have any physical relevance and need to be factored out.
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i.e. the results we actually calculated using the Nahm algorithm (see appendix B).
Then we start off with

((V(1/8) ⊗f V(1/3)) ⊗f R(2)(1/3, 1/3)) = R(2)(1/8, 1/8) ⊗f R(2)(1/3, 1/3).

Using associativity we can also calculate

(V(1/8) ⊗f ((V(1/3) ⊗f R(2)(1/3, 1/3)))) = (V(1/8) ⊗f (R(3)(0, 0, 2, 2) ⊕ R(2)(1/3, 1/3)))

= 2R(2)(1/8, 1/8) ⊕ R(2)(5/8, 21/8) ⊕ (V(1/8) ⊗f R(3)(0, 0, 2, 2)).

On the other hand, we can use the symmetry as well as the associativity once more to get

(V(1/3) ⊗f (V(1/8) ⊗f R(2)(1/3, 1/3))) = (V(1/3) ⊗f (2R(2)(1/8, 1/8) ⊕ R(2)(5/8, 21/8)))

= 4R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24).

By comparison we thus arrive at already two new higher rank fusion products

R(2)(1/8, 1/8) ⊗f R(2)(1/3, 1/3)

= 4R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24)

V(1/8) ⊗f R(3)(0, 0, 2, 2)

= 2R(2)(1/8, 1/8) ⊕ R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24).

The complete list of the higher rank fusion products which we calculated is given in
appendix B.

5. Explicit discussion of the augmented Yang–Lee model

Unfortunately, a complete exploration of the low-lying spectrum of the next easiest general
augmented model, the augmented Yang–Lee model at c2,5 = −22/5, is not yet possible due
to limitations on the computational power. Nevertheless, we were able to compute most
of the crucial features which we observed in the fusion of the augmented c2,3 = 0 model,
including the lowest rank 2 and rank 3 representations as well as the absence of irreducible
representations corresponding to the original minimal model. We also give some examples of
fusion products which confirm the general fusion rules conjectured in section 6. The explicit
results are listed in appendix C.

The Kac table of c2,5 = −22/5 is depicted in table 5. We encounter two bulk weight
chains

W
bulk, YL
(1,1) := {{0}, {1, 4}, {7, 13}, . . .}

W
bulk, YL
(2,1) := {{− 1

5

}
,
{

9
5 , 14

5

}
,
{

44
5 , 54

5

}
, . . .

}
as well as five border weight chains

W
border, YL
(1,2) := {

11
8 , 27

8 , 155
8 , . . .

}
W

border, YL
(2,2) := {

27
40 , 187

40 , 667
40 , . . .

}
W

border, YL
(3,2) := {

7
40 , 247

40 , 567
40 , . . .

}
W

border, YL
(4,2) := {− 1

8 , 63
8 , 95

8 , . . .
}

W
border, YL
(5,1) := {

2
5 , 27

5 , 77
5 , . . .

}
and a chain {−9/40, 91/40, 391/40, . . .} of weights on the corners. In table 6, we present
all rank 2 representations which we found in our sample calculations (see appendix C) as
well as their defining parameters. This is indeed the complete spectrum of lowest rank 2
representations to be expected according to the general considerations of section 6.
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Table 5. Kac table for c2,5 = −22/5.

s

1 2 3 4 5

1 0 11
8 4 63

8 13

2 − 1
5

27
40

14
5

247
40

54
5

3 − 1
5

7
40

9
5

187
40

44
5

4 0 − 1
8 1 27

8 7

5 2
5 − 9

40
2
5

91
40

27
5

6 1 − 1
8 0 11

8 4

r 7 9
5

7
40 − 1

5
27
40

14
5

8 14
5

27
40 − 1

5
7
40

9
5

9 4 11
8 0 − 1

8 1

10 27
5

91
40

2
5 − 9

40
2
5

11 7 27
8 1 − 1

8 0

12 44
5

187
40

9
5

7
40 − 1

5

13 54
5

247
40

14
5

27
40 − 1

5

14 13 63
8 4 11

8 0

Table 6. Specific properties of rank 2 representations in c2,5 = −22/5.

Level of Level of first Level of first
β1 β2 log. partner nullvector log. nullvector Type

R(2)(11/8, 11/8) – – 0 2 18 A
R(2)(27/40, 27/40) – – 0 4 16 A
R(2)(2/5, 2/5) – – 0 5 15 A
R(2)(7/40, 7/40) – – 0 6 14 A
R(2)(−1/8,−1/8) – – 0 8 12 A

R(2)(0, 1)7 3/5 – 1 4 13 C
R(2)(0, 1)13 −3/2 – 1 4 7 D
R(2)(0, 4)7 0 231/50 4 1 13 E
R(2)(0, 4)13 0 231/25 4 1 7 F
R(2)(−1/5, 9/5)9 −42/125 – 2 3 11 C
R(2)(−1/5, 9/5)11 21/50 – 2 3 9 D
R(2)(−1/5, 14/5)9 21/125 21/50 3 2 11 E
R(2)(−1/5, 14/5)11 −126/625 −63/125 3 2 9 F

As in the c2,3 = 0 model case the lowest border rank 2 representations, given in the first
block of table 6, do not need a further parameter for characterization. Their structure is again
represented by figure 2(A).

The structure of the lowest bulk rank 2 representations, given in the second block of
table 6, is depicted in figure 3; their respective special type is given in the last column. The
representations of types C and D exhibit their Jordan cell on the level of the first possible
nullvector of the ground state and can thus be described by just one parameter β = β1:

(L1)
l|h + l; 1〉 = β|h〉,
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where l denotes the level of the Jordan cell. Besides this, we have Lp|h + l; 1〉 = 0 for all
p � 2 and, hence, all other Virasoro monomials of length l vanish applied to |h + l; 1〉.

The representations of types E and F, however, have to accommodate a first nullvector
on the ground state already below the level of the Jordan cell. The same difficulties as in the
c2,3 = 0 model apply. We again need two parameters β1 and β2 parameterizing

(L1)
l|h + l; 1〉 = β1|h〉 P(L)|h + l; 1〉 = β2|h〉,

where we have taken P(L) = L4 for R(2)(0, 4)7 and R(2)(0, 4)13 as well as P(L) = L2L1 for
R(2)(−1/5, 14/5)9 and R(2)(−1/5, 14/5)11. All other Virasoro monomials of length l vanish
applied to |h + l; 1〉. This behaviour actually confirms our conjecture of section 4.1.1 that we
only need two parameters for this type of representation; furthermore, the above-presented
parameterization is performed exactly in the proposed way.

Again we checked for the appearance of the lowest logarithmic nullvector using the
algorithm of [32]. This could be successfully done in all cases listed in table 6. For this
c2,5 = −22/5 model these nullvector calculations were actually a nice and necessary check of
our proposed fusion rules as this information was usually not directly accessible in the fusion
spectrum due to the computational limits on L.

As a last issue in the discussion of the augmented Yang–Lee model, we want to have
a look at the irreducible representations with weights in the Kac table of the corresponding
non-augmented minimal model. There are two possible representations of this kind in this
model, V(h = 0) with first nullvectors on levels 1 and 4 as well as V(h = −1/5) with first
nullvectors on levels 2 and 3. Explicit calculations with the Nahm algorithm lead to

V(−1/5) ⊗f V(−1/5) = V(0) ⊕ V(−1/5) (8)

V(−1/5) ⊗f V(h) = 0 ∀h ∈ {
9
5 , 14

5 , 4
}
. (9)

But again using only the equations of (9) and the fusion rules of appendix C, we arrive at the
contradicting results

(V(−1/5) ⊗f (V(14/5) ⊗f V(14/5)))

= (V(−1/5) ⊗f V(0)) ⊕ (V(−1/5) ⊗f V(4)) ⊕ (V(−1/5) ⊗f V(−1/5))

⊕(V(−1/5) ⊗f V(9/5))

= (V(−1/5) ⊗f V(0)) ⊕ (V(−1/5) ⊗f V(−1/5))

as well as

((V(−1/5) ⊗f V(14/5)) ⊗f V(14/5)) = 0 ⊗f V(14/5)

= 0

which lead to

V(−1/5) ⊗f V(0) = 0

V(−1/5) ⊗f V(−1/5) = 0.

A similar calculation applies to V(0). Thus, we have to discard V(0) and V(−1/5) from the
spectrum.

But, with the same reasoning as in the augmented c2,3 = 0 model case, we encounter
rank 1 subrepresentations of rank 2 representations which are generated by states with weights
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h = 0 and h = −1/5. We therefore have to include the four rank 1 indecomposable (but
not irreducible) representations R(1)(0)1,R(1)(0)4,R(1)(−1/5)2 and R(1)(−1/5)3 into the
spectrum. R(1)(0)4 actually acquires the role of the vacuum representation as it acts as the
monoidal unit of the fusion algebra.

6. Representations and fusion product for general augmented cp, q models

The two generic examples of augmented cp,q models discussed in the preceding sections
already provide a good basis to conjecture what the representation content and the fusion
products of general augmented cp,q models should be like. In this section, we want to present
a quick overview over this extrapolated representation content and fusion rules. A more
detailed elaboration can be found in [50].

The generalization of the spectrum to an augmented cp,q model is quite straightforward.
As in the two examples the spectrum comprises only irreducible representations for weights
on the Kac table corners; irreducible as well as rank 2 indecomposable representations of
types A and B (see figure 2) for weights on the border, and rank 2 representations of types
C, D, E and F (see figure 3) as well as rank 3 representations of the form G and H (see
figures 4 and 5) for weights in the Kac table bulk. The case of irreducible representations
corresponding to weights in the bulk is slightly more complicated. The calculations for
c2,3 = 0 and c2,5 = −22/5 (see sections 4.3 and 5) show that it is not possible to
include irreducible representations corresponding to weights in the bulk which appear in
the Kac table of the corresponding non-augmented minimal model cp,q , i.e. weights in the
Kac table segment 1 � r < q, 1 � s < p. These weights exactly correspond to the
lowest weight of each bulk weight chain. As shown in the examples, the inclusion of these
irreducible representations would simply violate the symmetry and associativity of the fusion
product. On the other hand, the fusion of the border and corner irreducible representations
produces rank 2 representations R(2)(h(r1, s1), h(r2, s2))w which contain the lowest weights
of the corresponding bulk weight chain, let it be h(r1, s1) in this case, as a generating
state. This lowest weight state even generates an indecomposable subrepresentation of
R(2)(h(r1, s1), h(r2, s2))w which does not exhibit higher rank behaviour. These special rank 1
indecomposable subrepresentations play an important role as in both examples they include the
proper vacuum representation of the respective fusion ring. We conjecture that this behaviour
also generalizes to the other augmented cp,q models. And of course, for weights in the Kac table
bulk outside the segment 1 � r < q, 1 � s < p one will also find corresponding irreducible
representations.

One can now use the explicitly calculated fusion products for the two examples c = 0
and c = −22/5, which are listed in the appendices B and C, respectively, as the basis for
conjecturing fusion rules of general augmented cp,q models. As an example of the possible
form of such fusion rules, we want to sketch the fusion of two irreducible representations on
a corner or the border.

If we describe such an irreducible representation V i
(r,s)(h) corresponding to a conformal

weight h on a corner or a border, we choose the index (r, s) with the smallest product rs.
If there are two pairs with the same product, we choose the one with larger r (although this
last point is mere convention and does not effect the result). Then, the fusion product for
i, j ∈ {corner, border} amounts to the untruncated BPZ rules:

(
V i

(r1,s1)
(h1) ⊗ Vj

(r2,s2)
(h2)

)
f =

r1+r2−1∑
r3=|r1−r2|+1,step 2

s1+s2−1∑
s3=|s1−s2|+1,step 2

Ṽ(r3,s3)

∣∣∣∣∣
rules

. (10)
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On the right-hand side, however, we do not simply encounter a sum over irreducible
representations again. Some of the resulting Ṽ(r,s) are automatically combined into rank
2 or rank 3 representations. We briefly sketch the corresponding rules as to how to do this
combination (indicated as constraints in the equation).

(i) For (r, s) on a corner Ṽ(r,s) is simply replaced by the corresponding irreducible
representation Vcorner

(r,s) (h(r, s)).
(ii) Take the set of all (r, s) on the right-hand side of (10) corresponding to weights on

the border. If we find twice the same weight h(r1, s1) = h(r2, s2) which is the
lowest of a weight chain, these two need to be replaced by the rank 2 representation
R(2)(h(r1, s1), h(r2, s2)). Then, if we find two weights h(m1,m1), h(m2,m2) of the
same weight chain adjacent to each other in the chain, these need to be replaced
by R(2)(h(m1, n1), h(m2, n2)). All other weights in this set simply form irreducible
representations and are replaced by Vborder

(r,s) (h(r, s)).
(iii) Take the set of all (r, s) on the right-hand side of (10) corresponding to weights in the

bulk. If we encounter a set of four weights which correspond to the generating states
of one of the two types of rank 3 representations discussed in the preceding sections
we need to replace them by the rank 3 representation R(3)(h(r1, s1), h(r2, s2), h(r3, s3),

h(r4, s4)).
(iv) Rank 2 representations need two generating states. For bulk representations these consist

of one weight each from two adjacent sets in the weight chain. If this set of two weights
h(r1, s1), h(r2, s2) contains the lowest weight of this weight chain, let it be h(r1, s1), there
are still two possible representations with this set of weights. The additional index is
given by the level w of the weight in the third set of the weight chain which is not (!)
the first possible nullvector on h(r2, s2), i.e. which is not equal to h(r2, s2) + r2s2. Each
two weights of this form have to be replaced by the rank 2 representation R(2)(h(r1, s1),

h(r2, s2))w.
(v) From the set of all remaining (r, s) within the bulk we find to each lowest weight h(r1, s1)

of a bulk weight chain a corresponding weight h(r2, s2) of the second tuple of this weight
chain. These form a rank 1 indecomposable representation.

(vi) All (r, s) corresponding to weights in the bulk which have not been used up in the three
preceding points have to be replaced by V(r,s)(h(r, s)).

Unfortunately, one cannot write down the fusion rules for general augmented theories
in such a nice form as for the augmented cp,1 models [20]. First of all, we do not
have border representations just on one side such that a restriction to an infinite strip
of the Kac table nicely promotes the first border conformal weights beyond that strip to
corresponding rank 2 representations. Second, for the bulk there are simply not enough
entries in the Kac table in order to uniquely label all different irreducible, rank 2 and rank 3
representations.

The fusion products including representations corresponding to conformal weights in the
bulk can be extrapolated along the same lines. One can even write down fusion rules for fusion
products with higher rank representations which make use of the earlier elaborated fact that
all higher rank representations can be constructed by indecomposably connecting a number
of representations of one rank lower.

Finally, the examples show that starting with border and corner representations the whole
fusion closes without the inclusion of any irreducible or rank 1 representation corresponding
to weights in the bulk. Actually, we even have a closing fusion ring of only the representations
with the highest rank of the respective types (bulk, border, corner). All lower rank
representations appear as subrepresentations and their fusion is determined by the fusion
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of the respective higher rank representation. This explains the artificiality of, e.g., the fifth
rule which originates in our wish to fuse these subrepresentations as representations in their
own right.

A more detailed elaboration of this still speculative extrapolation of the calculated fusion
products can be found in [50].

7. Conclusion and outlook

In this paper, we have given the explicit fusion rules for two examples of general augmented
minimal models, the augmented c2,3 = 0 and the augmented Yang–Lee model. We have
shown that these models exhibit an even richer indecomposable structure in comparison to the
cp,1 models with representations up to rank 3. We have elaborated a number of these newly
appearing representations of rank 2 and 3 in detail. Especially, we have shown for some of these
examples that one can construct rank 3 representations by indecomposably connecting rank
2 representations. This is a very interesting generalization of the rank 2 representation case
which can be composed by indecomposably connecting several irreducible representations
and, presumably, it can likewise be described by the mathematical procedure of an extension
of a representation module with another along the lines of [22].

We have also shown that the fusion rule consistency conditions of symmetry
and associativity actually restrict the representation spectrum—irreducible representations
corresponding to weights of the original non-augmented minimal model cannot be included
into the spectrum consistently. We actually find that the vacuum representation is given by
an indecomposable but not irreducible rank 1 subrepresentation of a rank 2 representation.
For the c2,3 = 0 model, in particular, this settles the long standing puzzle of how to construct
a consistent vacuum representation and character, at least on the level of pure Virasoro
representations. This has a direct impact on models with central charge c = 0 for several
interesting physical phenomena as, e.g., percolation [31, 51–53], quenched disorder models
[54, 55], or the dilute case in polymer physics [1].

These two examples already reveal a concise general structure which we think exhibits
almost all of the generic structure of general augmented cp,q models. Accordingly, we have
conjecturally sketched how to extrapolate this structure to the general representation content
and fusion rules of general augmented cp,q models. These conjectured fusion rules still inherit
much of the BPZ fusion structure. The main generalization lies in the fact that we do not
interpret the BPZ fusion rules ‘minimally’ for these models. This ‘minimal’ refers to the BPZ
fusion rules for the non-augmented minimal models where one takes a section over all ways
of applying the untruncated BPZ rules. The augmented fusion rules allow for definitely more
representation content. This is, however, in perfect accordance with and directly reduces to the
already known rules for the special case of augmented cp,1 models [20], although the general
rules do not look as nicely compact as the special ones in [20].

Concerning our special example of c2,3 = 0, we actually find that the numerical results
of [4], table 1, which are supposed to give the low level state content of CFT representations
at c = 0, perfectly match our representations R(1)(0)2,R(1)(0)1 and V(1/3), respectively.
Although the numerical results give only relatively few levels, we conjecture that they are
correctly described by the above-mentioned c2,3 = 0 representations. Indeed, the spectrum
of equation (5.1) in [4] is contained in a subalgebra of the augmented c2,3 = 0 model which
consists of representations up to rank 2 corresponding to the first column of the Kac table
(i.e. s = 1). The characters given in equation (5.2) of [4] agree with the field content of
the irreducible representations for weights h = 1

3 , 10
3 , . . . and with rank 1 indecomposable
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subrepresentations of rank 2 representations for integer weights h = 0, 1, 2, 5, 7, . . . . As
the c = 0 theory in [4] describes a XXZ quantum spin chain, the above observations
open a new and very exciting connection of logarithmic CFT to the topic of quantum
spin chains which is popular not only in the field of integrable systems but also seems
to have an important impact on the AdS/CFT correspondence and, hence, string theory
[56, 57].

We have also shown that the findings in this paper are in perfect agreement with the
logarithmic nullvector calculations performed in [32]. Using the technique of the Nahm
algorithm we have actually been able to pinpoint the precise structure of higher rank Virasoro
representations in c2,3 = 0; various types of possible rank 2 representations had already been
conjectured in [32].

On the other hand, the question of whether these models exhibit a larger W-algebra
and how the Virasoro representations combine to representations of this larger symmetry
algebra still remains open. There are, however, strong hints at the existence of such an
enhanced symmetry algebra coming from inspections of the corresponding representations
of the modular group [27]. And even the mere fact that the Virasoro fusion rules so nicely
generalize from the cp,1 model case where we know a triplet W-algebra to exist is a further
good hint. This may be exemplified by the existence of a representation like V(7) in the
c2,3 = 0 model whose fusion rules behave in just the same way as the ones of the ‘spin
representation’ V1,p in the cp,1 models. Indeed, in the cp,1 models this spin representation
behaves roughly like a square root of the W-representation.

The representations of the modular group are already very restrictive such that for e.g.
c2,3 = 0 it suffices to know the field content up to level 7 in order to precisely know the full
W-representation. We believe that this restrictiveness together with our new knowledge of
the precise structure of the Virasoro representations should lead to a consistent set of modular
functions which represent the right W-characters and produce the right W-fusion rules. This
is subject to ongoing research [27].
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Appendix A. Explicit Jordan diagonalization of L0 for R(3)(0, 1, 2, 5)

In this appendix, we want to present a basis of states for the lowest five levels of R(3)(0, 1, 2, 5)

which brings the L0 matrix in a Jordan diagonal form. The basis is denoted by ni with a
running index as assigned by the computer program. Vectors which are not shown to be
equal to descendants of some other vectors are understood to be generating states. These
are n0, n5, n24 and n18 at levels 0, 1, 2 and 5, respectively. On the right-hand side, we
have denoted only the Jordan block in L0 for the respective states. Different Jordan blocks
are separated by lines. All other L0 entries are zero.
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States L0 matrix

n0 0

n4 = L−1n0 1 1
n5 = 0 1

n6 = L2
−1n0 = L−1n4 2 1

n7 = L−1n5 0 2

n23 = L−2n0 2 1
n24 0 2

n8 = L−2L−1n0 = L−2n4 3 1
n9 = L−2n5 0 3

n25 = L3
−1n0 = L2

−1n4 3 1
n26 = L2

−1n5 0 3

n38 = (L−3 + L−2L−1)n0 = L−1n23 3 1
n39 = L−1n24 0 3

n10 = L−3L−1n0 = L−3n4 4 1
n11 = L−3n5 0 4

n27 = L−2L
2
−1n0 = L−2L−1n4 4 1

n28 = L−2L−1n5 0 4

n40 = L2
−2n0 = L−2n23 4 1

n41 = L−2n24 0 4

n48 = L4
−1n0 = L3

−1n4 4 1
n49 = L3

−1n5 0 4

n56 = (2L−4 + 2L−3L−1 + L−2L
2
−1)n0 = L2

−1n23 4 1
n57 = L2

−1n24 0 4

n16 = 4655
31758

(
L−4L−1 − L−3L

2
−1 + 5

3 L−2L
3
−1 − L2

−2L−1 − 1
4 L5

−1

)
n0 5 1 0

n17 = 4655
63516

((
L−4 − 5

2 L−3L−1 − L2
−2 + 19

6 L−2L
2
−1 − 1

2 L4
−1

)
n5 +

(
L−3 − L−2L−1 + 1

6 L3
−1

)
n24

)
0 5 1

n18 0 0 5

n29 = L−3L
2
−1n0 = L−3L−1n4 5 1

n30 = L−3L−1n5 0 5

n42 = L−3L−2n0 = L−3n23 5 1
n43 = L−3n24 0 5

n50 = L2
−2L−1n0 = L2

−2n4 5 1
n51 = L2

−2n5 0 5

n58 = L−2L
3
−1n0 = L−2L

2
−1n4 5 1

n59 = L−2L
2
−1n5 0 5

n63 = L5
−1n0 = L4

−1n4 5 1
n64 = L4

−1n5 0 5

n68 = (
6L−5 + 6L−4L−1 + 3L−3L

2
−1 + L−2L

3
−1

)
n0 = L3

−1n23 5 1
n69 = L3

−1n24 0 5

n70 = (
L−4 + 1

2 L−3L−1 − L2
−2 + 1

6 L−2L
2
−1

)
n5 − (

L−3 − L−2L−1 + 1
6 L3

−1

)
n24 5
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Appendix B. Explicit fusion rules for c2, 3 = 0

The following table contains the results of our explicit calculations of the fusion product of
irreducible and rank 1 representations with each other in the augmented c2,3 = 0 model. The
first column gives the representations to be fused. Then the level L at which we calculated
the new representation as well as the maximal level L̃ up to which we took the corresponding
constraints into account are given. The last column contains the result.

The computational power restricts the level L at which the fused representations are
calculated, unfortunately quite severely for the higher representations. Hence, it was
sometimes not possible to reach a high enough L to actually see the indecomposable structure
of all component representations of the result. We nevertheless denoted the result as we would
expect it according to the proposed fusion rules—to discern this guessed higher representations
from the explicit results we indicated them by a question mark. But certainly our results are
always in agreement with these possible higher rank representations up to the level L given in
the table.

L L̃max Fusion product

V(5/8) ⊗f V(5/8) 6 11 R(2)(0, 2)7

⊗f V(1/3) 6 11 V(−1/24)

⊗f V(1/8) 7 8 R(2)(0, 1)5

⊗f V(−1/24) 6 9 R(2)(1/3, 1/3)

⊗f V(33/8) 6 11 R(2)(2, 7)

⊗f V(10/3) 6 7 V(35/24)

⊗f V(21/8) 6 11 R(2)(1, 5)

⊗f V(35/24) 5 7 R(2)(1/3, 10/3)

⊗f V(2) 6 9 V(5/8)

⊗f V(1) 6 9 V(1/8)

⊗f V(7) 6 9 V(33/8)

⊗f V(5) 6 9 V(21/8)

V(1/3) ⊗f V(1/3) 6 11 R(2)(0, 2)5 ⊕ V(1/3)

⊗f V(1/8) 6 9 R(2)(1/8, 1/8)

⊗f V(−1/24) 6 9 R(2)(5/8, 5/8) ⊕ V(−1/24)

⊗f V(33/8) 6 9 V(35/24)

⊗f V(10/3) 6 9 R(2)(1, 7) ⊕ V(10/3)

⊗f V(21/8) 6 9 R(2)(5/8, 21/8)

⊗f V(35/24) 5 7 R(2)(1/8, 33/8) ⊕ V(35/24)

⊗f V(2) 6 9 V(1/3)

⊗f V(1) 6 9 R(2)(0, 1)7

⊗f V(7) 6 9 V(10/3)

⊗f V(5) 6 9 R(2)(2, 5)

V(1/8) ⊗f V(1/8) 6 8 R(2)(1/3, 1/3) ⊕ R(2)(0, 2)7

⊗f V(−1/24) 6 7 R(3)(0, 0, 1, 1)

⊗f V(33/8) 6 9 R(2)(1, 5)

⊗f V(10/3) 6 8 R(2)(5/8, 21/8)

⊗f V(21/8) 5 7 R(2)(1/3, 10/3) ⊕ R(2)(2, 7)

⊗f V(35/24) 5 7 R(3)(0, 1, 2, 5)

⊗f V(2) 6 9 V(1/8)

⊗f V(1) 5 7 V(5/8) ⊕ V(−1/24)

⊗f V(7) 6 8 V(21/8)

⊗f V(5) 6 7 V(33/8) ⊕ V(35/24)
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L L̃max Fusion product

V(−1/24) ⊗f V(−1/24) 5 7 R(3)(0, 0, 2, 2) ⊕ R(2)(1/3, 1/3)

⊗f V(21/8) 5 7 R(3)(0, 1, 2, 5)

⊗f V(35/24) 4 6 R(3)(0, 1, 2, 7)? ⊕ R(2)(1/3, 10/3)

⊗f V(5) 5 7 R(2)(5/8, 21/8)

⊗f V(143/24) 0 6 R(3)(1, 5, 7, 15)? ⊕ R(2)(10/3, 28/3)?

V(33/8) ⊗f V(33/8) 6 8 R(2)(0, 2)7 ⊕ R(2)(7, 15)?
⊗f V(10/3) 5 7 V(−1/24) ⊕ V(143/24)

⊗f V(−1/24) 5 7 R(2)(1/3, 10/3)

⊗f V(21/8) 5 7 R(2)(0, 1)5 ⊕ R(2)(5, 12)?
⊗f V(35/24) 6 7 R(2)(1/3, 1/3) ⊕ R(2)(10/3, 28/3)

⊗f V(1) 6 9 V(21/8)

⊗f V(7) 5 7 V(5/8) ⊕ V(85/8)

⊗f V(5) 6 8 V(1/8) ⊕ V(65/8)

V(10/3) ⊗f V(10/3) 5 7 R(2)(0, 2)5 ⊕ R(2)(5, 15)? ⊕ V(1/3) ⊕ V(28/3)

⊗f V(−1/24) 5 7 R(2)(1/8, 33/8) ⊕ V(35/24)

⊗f V(21/8) 5 7 R(2)(1/8, 1/8) ⊕ R(2)(33/8, 65/8)

⊗f V(35/24) 4 6 R(2)(5/8, 5/8) ⊕ R(2)(21/8, 85/8)? ⊕ V(−1/24) ⊕ V(143/24)

⊗f V(5) 3 9 R(2)(0, 1)7 ⊕ R(2)(7, 12)?

V(21/8) ⊗f V(21/8) 4 6 R(2)(1/3, 1/3) ⊕ R(2)(10/3, 28/3)? ⊕ R(2)(0, 2)7 ⊕ R(2)(7, 15)?
⊗f V(35/24) 4 6 R(3)(0, 0, 1, 1) ⊕ R(3)(2, 5, 7, 12)?

V(35/24) ⊗f V(35/24) 3 5 R(3)(0, 0, 2, 2) ⊕ R(3)(1, 5, 7, 15)? ⊕ R(2)(1/3, 1/3)

⊕R(2)(10/3, 28/3)?

V(2) ⊗f V(−1/24) 6 9 V(−1/24)

⊗f V(33/8) 6 8 V(33/8)

⊗f V(10/3) 6 7 V(10/3)

⊗f V(21/8) 6 9 V(21/8)

⊗f V(35/24) 5 7 V(35/24)

⊗f V(2) 6 9 R(1)(0)2

⊗f V(1) 6 9 R(1)(0)1

⊗f V(7) 6 9 V(7)

⊗f V(5) 6 9 V(5)

⊗f R(1)(0)2 6 9 V(2)

⊗f R(1)(0)1 6 9 V(1)

V(1) ⊗f V(−1/24) 5 7 R(2)(1/8, 1/8)

⊗f V(10/3) 5 7 R(2)(2, 5)

⊗f V(21/8) 5 7 V(33/8) ⊕ V(35/24)

⊗f V(35/24) 5 7 R(2)(5/8, 21/8)

⊗f V(1) 6 8 R(1)(0)2 ⊕ V(1/3)

⊗f V(7) 5 7 V(5)

⊗f V(5) 5 7 V(7) ⊕ V(10/3)

V(7) ⊗f V(−1/24) 5 7 V(35/24)

⊗f V(10/3) 5 7 V(1/3) ⊕ V(28/3)

⊗f V(21/8) 5 7 V(1/8) ⊕ V(65/8)

⊗f V(35/24) 4 6 V(−1/24) ⊕ V(143/24)

⊗f V(7) 5 7 R(1)(0)2 ⊕ V(15)

⊗f V(5) 5 7 R(1)(0)1 ⊕ V(12)

V(5) ⊗f V(21/8) 3 6 V(5/8) ⊕ V(−1/24) ⊕ V(85/8) ⊕ V(143/24)

⊗f V(35/24) 4 6 R(2)(1/8, 1/8) ⊕ R(2)(33/8, 65/8)

⊗f V(5) 5 7 R(1)(0)2 ⊕ V(15) ⊕ V(1/3) ⊕ V(28/3)
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L L̃max Fusion product

R(1)(0)2 ⊗f V(5/8) 6 9 V(5/8)

⊗f V(1/3) 6 9 V(1/3)

⊗f V(1/8) 6 9 V(1/8)

⊗f V(−1/24) 6 9 V(−1/24)

⊗f V(33/8) 6 9 V(33/8)

⊗f V(10/3) 6 9 V(10/3)

⊗f V(21/8) 6 9 V(21/8)

⊗f V(35/24) 6 9 V(35/24)

⊗f V(2) 6 9 V(2)

⊗f V(1) 6 9 V(1)

⊗f V(7) 6 9 V(7)

⊗f V(5) 6 9 V(5)

⊗f R(1)(0)2 6 9 R(1)(0)2

⊗f R(1)(0)1 6 9 R(1)(0)1

R(1)(0)1 ⊗f V(5/8) 6 9 V(1/8)

⊗f V(1/3) 6 9 R(2)(0, 1)7

⊗f V(1/8) 6 9 V(5/8) ⊕ V(−1/24)

⊗f V(−1/24) 6 9 R(2)(1/8, 1/8)

⊗f V(33/8) 6 9 V(21/8)

⊗f V(10/3) 6 9 R(2)(2, 5)

⊗f V(21/8) 6 9 V(33/8) ⊕ V(35/24)

⊗f V(35/24) 6 9 R(2)(5/8, 21/8)

⊗f V(2) 6 9 V(1)

⊗f V(1) 6 9 V(2) ⊕ V(1/3)

⊗f V(7) 6 9 V(5)

⊗f V(5) 6 9 V(7) ⊕ V(10/3)

⊗f R(1)(0)2 6 9 R(1)(0)1

⊗f R(1)(0)1 6 9 R(1)(0)2 ⊕ V(1/3)

The next table lists our results for the fusion of irreducible and rank 1 representations
with rank 2 representations. The notation stays as above.

L L̃max Fusion product

V(5/8) ⊗f R(2)(5/8, 5/8) 5 7 R(3)(0, 0, 2, 2)

⊗f R(2)(1/3, 1/3) 5 7 2V(−1/24) ⊕ V(35/24)

⊗f R(2)(1/8, 1/8) 5 7 R(3)(0, 0, 1, 1)

⊗f R(2)(5/8, 21/8) 5 8 R(3)(0, 1, 2, 5)

⊗f R(2)(1/3, 10/3) 4 6 V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24)

⊗f R(2)(1/8, 33/8) 4 6 R(0, 1, 2, 7)?
⊗f R(2)(0, 1)5 4 6 2V(1/8) ⊕ V(21/8)

⊗f R(2)(0, 1)7 4 6 R(2)(1/8, 1/8)

⊗f R(2)(0, 2)5 4 6 R(2)(5/8, 5/8)

⊗f R(2)(0, 2)7 4 7 2V(5/8) ⊕ V(33/8)

⊗f R(2)(1, 5) 4 6 V(1/8) ⊕ 2V(21/8) ⊕ V(65/8)

⊗f R(2)(2, 5) 4 6 R(2)(5/8, 21/8) ⊕ V(65/8)

⊗f R(2)(1, 7) 4 8 R(2)(1/8, 33/8)

⊗f R(2)(2, 7) 4 7 V(5/8) ⊕ 2V(33/8) ⊕ V(85/8)
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L L̃max Fusion product

V(1/3) ⊗f R(2)(5/8, 5/8) 5 7 R(2)(5/8, 21/8) ⊕ 2V(−1/24)

⊗f R(2)(1/3, 1/3) 5 7 R(3)(0, 0, 2, 2) ⊕ R(2)(1/3, 1/3)

⊗f R(2)(1/8, 1/8) 4 7 2R(2)(1/8, 1/8) ⊕ V(35/24)

⊗f R(2)(5/8, 21/8) 3 10 2R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(1/3, 10/3) 3 6 R(3)(0, 1, 2, 7)? ⊕ R(2)(1/3, 10/3)

⊗f R(2)(1/8, 33/8) 4 7 R(2)(1/8, 1/8) ⊕ R(2)(33/8, 65/8) ⊕ 2V(35/24)

⊗f R(2)(0, 1)5 4 6 R(3)(0, 0, 1, 1)

⊗f R(2)(0, 1)7 4 6 2R(2)(0, 1)7 ⊕ V(10/3)

⊗f R(2)(0, 2)5 4 7 R(2)(2, 5) ⊕ 2V(1/3)

⊗f R(2)(0, 2)7 4 6 R(2)(1/3, 1/3)

⊗f R(2)(1, 5) 5 9 R(3)(0, 1, 2, 5)

⊗f R(2)(2, 5) 4 6 2R(2)(2, 5) ⊕ V(1/3) ⊕ V(28/3)

⊗f R(2)(1, 7) 4 8 R(2)(0, 1)7 ⊕ R(2)(7, 12)? ⊕ 2V(10/3)

⊗f R(2)(2, 7) 4 7 R(2)(1/3, 10/3)

V(1/8) ⊗f R(2)(5/8, 5/8) 5 7 R(3)(0, 0, 1, 1) ⊕ R(2)(1/3, 10/3)

⊗f R(2)(1/3, 1/3) 5 7 2R(2)(1/8, 1/8) ⊕ R(2)(5/8, 21/8)

⊗f R(2)(1/8, 1/8) 5 7 R(3)(0, 0, 2, 2) ⊕ 2R(2)(1/3, 1/3)

⊗f R(2)(5/8, 21/8) 3 6 R(3)(0, 1, 2, 7)? ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(1/3, 10/3) 3 6 R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ R(2)(33/8, 65/8)?
⊗f R(2)(1/8, 33/8) 3 6 R(3)(0, 1, 2, 5)? ⊕ R(2)(1/3, 1/3) ⊕ R(2)(10/3, 28/3)?
⊗f R(2)(0, 1)5 4 6 2V(5/8) ⊕ V(33/8) ⊕ 2V(−1/24) ⊕ V(35/24)

⊗f R(2)(0, 1)7 4 6 R(2)(5/8, 5/8) ⊕ 2V(−1/24)

⊗f R(2)(0, 2)5 4 6 R(2)(1/8, 1/8) ⊕ V(35/24)

⊗f R(2)(0, 2)7 4 7 2V(1/8) ⊕ V(21/8)

⊗f R(2)(1, 5) 3 6 V(5/8) ⊕ 2V(33/8) ⊕ V(85/8) ⊕ V(−1/24)

⊕2V(−35/24) ⊕ V(143/24)

⊗f R(2)(2, 5) 4 6 R(2)(1/8, 33/8) ⊕ 2V(35/24)

⊗f R(2)(1, 7) 3 8 R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(2, 7) 4 7 V(1/8) ⊕ 2V(21/8) ⊕ V(65/8)

V(−1/24) ⊗f R(2)(5/8, 5/8) 4 6 R(3)(0, 1, 2, 5)? ⊕ 2R(2)(1/3, 1/3)

⊗f R(2)(1/3, 1/3) 4 6 2R(2)(5/8, 5/8) ⊕ R(2)(1/8, 33/8) ⊕ 2V(−1/24) ⊕ V(35/24)

⊗f R(2)(1/8, 1/8) 4 6 2R(3)(0, 0, 1, 1) ⊕ R(2)(1/3, 10/3)

⊗f R(2)(5/8, 21/8) 2 5 2R(3)(0, 1, 2, 5)? ⊕ R(2)(1/3, 1/3) ⊕ R(2)(10/3, 28/3)?
⊗f R(2)(1/3, 10/3) 2 5 R(2)(5/8, 5/8) ⊕ 2R(2)(1/8, 33/8)? ⊕ R(2)(21/8, 85/8)?

⊕V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24)

⊗f R(2)(1/8, 33/8) 3 6 R(0, 0, 1, 1) ⊕ R(2, 5, 7, 12)? ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(0, 1)5 4 6 2R(2)(1/8, 1/8) ⊕ R(2)(5/8, 21/8)

⊗f R(2)(0, 1)7 4 6 2R(2)(1/8, 1/8) ⊕ V(35/24)

⊗f R(2)(0, 2)5 4 7 R(2)(5/8, 21/8) ⊕ 2V(−1/24)

⊗f R(2)(0, 2)7 4 7 2V(−1/24) ⊕ V(35/24)

⊗f R(2)(1, 5) 2 8 R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ R(2)(33/8, 65/8)?
⊗f R(2)(2, 5) 3 6 2R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(1, 7) 2 8 R(2)(1/8, 1/8) ⊕ R(2)(33/8, 65/8)? ⊕ 2V(35/24)

⊗f R(2)(2, 7) 3 6 V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24)

V(33/8) ⊗f R(2)(5/8, 5/8) 3 9 R(3)(0, 1, 2, 7)?
⊗f R(2)(1/3, 1/3) 3 9 V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24)

⊗f R(2)(1/8, 1/8) 3 7 R(3)(0, 1, 2, 5)?
⊗f R(2)(5/8, 21/8) 2 8 R(3)(0, 0, 1, 1) ⊕ R(3)(2, 5, 7, 12)?
⊗f R(2)(1/3, 10/3) 1 9 2V(−1/24) ⊕ 2V(35/24) ⊕ 2V(143/24) ⊕ V(323/24)

⊗f R(2)(1/8, 33/8) 2 10 R(0, 0, 2, 2) ⊕ R(3)(1, 5, 7, 15)?
⊗f R(2)(0, 1)5 3 9 V(1/8) ⊕ 2V(21/8) ⊕ V(65/8)
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L L̃max Fusion product

⊗f R(2)(0, 1)7 3 7 R(2)(5/8, 21/8)

⊗f R(2)(0, 2)5 3 9 R(2)(1/8, 33/8)?
⊗f R(2)(0, 2)7 3 9 V(5/8) ⊕ 2V(33/8) ⊕ V(85/8)

⊗f R(2)(1, 5) 2 9 2V(1/8) ⊕ 2V(21/8) ⊕ 2V(65/8) ⊕ V(133/8)

⊗f R(2)(2, 5) 2 9 R(2)(1/8, 1/8) ⊕ R(2)(33/8, 65/8)?
⊗f R(2)(1, 7) 2 8 R(2)(5/8, 5/8) ⊕ R(2)(21/8, 85/8)?
⊗f R(2)(2, 7) 2 9 2V(5/8) ⊕ 2V(33/8) ⊕ 2V(85/8) ⊕ V(161/8)

V(10/3) ⊗f R(2)(5/8, 5/8) 2 8 R(2)(1/8, 1/8) ⊕ R(2)(33/8, 65/8)? ⊕ 2V(35/24)

⊗f R(2)(1/3, 1/3) 2 8 R(3)(0, 1, 2, 7)? ⊕ R(2)(1/3, 10/3)?
⊗f R(2)(1/8, 1/8) 2 8 2R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(0, 1)5 2 8 R(3)(0, 1, 2, 5)?
⊗f R(2)(0, 1)7 2 8 2R(2)(2, 5)? ⊕ V(1/3) ⊕ V(28/3)

⊗f R(2)(0, 2)5 2 8 R(2)(0, 1)7 ⊕ R(2)(7, 12)? ⊕ 2V(10/3)

⊗f R(2)(0, 2)7 2 8 R(2)(1/3, 10/3)?

V(21/8) ⊗f R(2)(5/8, 5/8) 2 8 R(3)(0, 1, 2, 5)? ⊕ R(2)(1/3, 1/3) ⊕ R(2)(10/3, 28/3)?
⊗f R(2)(1/3, 1/3) 2 8 R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ R(2)(33/8, 65/8)?
⊗f R(2)(1/8, 1/8) 2 8 R(3)(0, 1, 2, 7)? ⊕ 2R(2)(1/3, 10/3)?
⊗f R(2)(0, 1)5 2 8 V(5/8) ⊕ 2V(33/8) ⊕ V(85/8) ⊕ V(−1/24) ⊕ 2V(35/24)

⊕V(143/24)

⊗f R(2)(0, 1)7 2 8 R(2)(1/8, 33/8)? ⊕ 2V(35/24)

⊗f R(2)(0, 2)5 2 8 R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(0, 2)7 2 8 V(1/8) ⊕ 2V(21/8) ⊕ V(65/8)

V(2) ⊗f R(2)(5/8, 5/8) 5 7 R(2)(5/8, 5/8)

⊗f R(2)(1/3, 1/3) 5 7 R(2)(1/3, 1/3)

⊗f R(2)(1/8, 1/8) 5 7 R(2)(1/8, 1/8)

⊗f R(2)(5/8, 21/8) 4 7 R(2)(5/8, 21/8)

⊗f R(2)(1/3, 10/3) 4 7 R(2)(1/3, 10/3)

⊗f R(2)(1/8, 33/8) 4 7 R(2)(1/8, 33/8)

⊗f R(2)(0, 1)5 4 6 R(2)(0, 1)5

⊗f R(2)(0, 1)7 4 6 R(2)(0, 1)7

⊗f R(2)(0, 2)5 4 6 R(2)(0, 2)5

⊗f R(2)(0, 2)7 4 6 R(2)(0, 2)7

⊗f R(2)(1, 5) 4 6 R(2)(1, 5)

⊗f R(2)(2, 5) 4 6 R(2)(2, 5)

⊗f R(2)(1, 7) 6 8 R(2)(1, 7)

⊗f R(2)(2, 7) 6 8 R(2)(2, 7)

V(1) ⊗f R(2)(5/8, 5/8) 5 7 R(2)(1/8, 1/8) ⊕ V(35/24)

⊗f R(2)(1/3, 1/3) 5 7 R(3)(0, 0, 1, 1)

⊗f R(2)(1/8, 1/8) 5 7 R(2)(5/8, 5/8) ⊕ 2V(−1/24)

⊗f R(2)(5/8, 21/8) 4 7 R(2)(1/8, 33/8) ⊕ 2V(35/24)

⊗f R(2)(1/3, 10/3) 3 6 R(3)(0, 1, 2, 5)?
⊗f R(2)(1/8, 33/8) 4 5 R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(0, 1)5 4 6 R(2)(0, 2)7 ⊕ R(2)(1/3, 1/3)

⊗f R(2)(0, 1)7 4 6 R(2)(0, 2)5 ⊕ 2V(1/3)

⊗f R(2)(0, 2)5 4 7 R(2)(0, 1)7 ⊕ V(10/3)

⊗f R(2)(0, 2)7 4 7 R(2)(0, 1)5

⊗f R(2)(1, 5) 4 6 R(2)(2, 7)? ⊕ R(2)(1/3, 10/3)

⊗f R(2)(2, 5) 4 6 R(2)(1, 7)? ⊕ 2V(10/3)

⊗f R(2)(1, 7) 4 8 R(2)(2, 5) ⊕ V(1/3) ⊕ V(28/3)

⊗f R(2)(2, 7) 4 7 R(2)(1, 5)
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L L̃max Fusion product

V(7) ⊗f R(2)(5/8, 5/8) 4 8 R(2)(1/8, 33/8)

⊗f R(2)(1/3, 1/3) 4 8 R(2)(1/3, 10/3)

⊗f R(2)(1/8, 1/8) 4 9 R(2)(5/8, 21/8)

⊗f R(2)(5/8, 21/8) 3 7 R(2)(1/8, 1/8) ⊕ R(2)(33/8, 65/8)?
⊗f R(2)(1/3, 10/3) 3 6 R(2)(1/3, 1/3) ⊕ R(2)(10/3, 28/3)?
⊗f R(2)(1/8, 33/8) 3 7 R(2)(5/8, 5/8) ⊕ R(2)(21/8, 85/8)?
⊗f R(2)(0, 1)5 4 6 R(2)(1, 5)

⊗f R(2)(0, 1)7 4 6 R(2)(2, 5)

⊗f R(2)(0, 2)5 6 7 R(2)(1, 7)

⊗f R(2)(0, 2)7 5 7 R(2)(2, 7)

⊗f R(2)(1, 5) 4 6 R(2)(0, 1)5 ⊕ R(2)(5, 12)?
⊗f R(2)(2, 5) 4 6 R(2)(0, 1)7 ⊕ R(2)(7, 12)?
⊗f R(2)(1, 7) 3 6 R(2)(0, 2)5 ⊕ R(2)(5, 15)?
⊗f R(2)(2, 7) 4 7 R(2)(0, 2)7 ⊕ R(2)(7, 15)?

V(5) ⊗f R(2)(5/8, 5/8) 3 7 R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(1/3, 1/3) 3 7 R(3)(0, 1, 2, 5)?
⊗f R(2)(1/8, 1/8) 3 7 R(2)(1/8, 33/8)? ⊕ 2V(35/24)

⊗f R(2)(5/8, 21/8) 2 8 R(2)(5/8, 5/8) ⊕ R(2)(21/8, 85/8)? ⊕ 2V(−1/24)

⊕2V(143/24)

⊗f R(2)(1/3, 10/3) 2 8 R(3)(0, 0, 1, 1) ⊕ R(3)(2, 5, 7, 12)?
⊗f R(2)(1/8, 33/8) 2 8 R(2)(1/8, 1/8) ⊕ R(2)(33/8, 65/8)? ⊕ 2V(35/24)

⊕V(323/24)

⊗f R(2)(0, 1)5 3 8 R(2)(2, 7)? ⊕ R(2)(1/3, 10/3)

⊗f R(2)(0, 1)7 3 9 R(2)(1, 7)? ⊕ 2V(10/3)

⊗f R(2)(0, 2)5 3 8 R(2)(2, 5) ⊕ V(1/3) ⊕ V(28/3)

⊗f R(2)(0, 2)7 3 8 R(2)(1, 5)?
⊗f R(2)(1, 5) 2 8 R(2)(0, 2)7 ⊕ R(2)(7, 15)? ⊕ R(2)(1/3, 1/3)

⊕R(2)(10/3, 28/3)?
⊗f R(2)(2, 5) 2 8 R(2)(0, 2)5 ⊕ R(2)(5, 15)? ⊕ 2V(1/3) ⊕ 2V(28/3)

⊗f R(2)(1, 7) 2 8 R(2)(0, 1)7 ⊕ R(2)(7, 12)? ⊕ 2V(10/3) ⊕ V(55/3)

⊗f R(2)(2, 7) 2 8 R(2)(0, 1)5 ⊕ R(2)(5, 12)?

R(1)(0)2 ⊗f R(2)(5/8, 5/8) 5 7 R(2)(5/8, 5/8)

⊗f R(2)(1/3, 1/3) 5 7 R(2)(1/3, 1/3)

⊗f R(2)(1/8, 1/8) 5 7 R(2)(1/8, 1/8)

⊗f R(2)(5/8, 21/8) 4 7 R(2)(5/8, 21/8)

⊗f R(2)(1/3, 10/3) 4 7 R(2)(1/3, 10/3)

⊗f R(2)(1/8, 33/8) 4 7 R(2)(1/8, 33/8)

⊗f R(2)(0, 1)5 5 7 R(2)(0, 1)5

⊗f R(2)(0, 1)7 5 7 R(2)(0, 1)7

⊗f R(2)(0, 2)5 5 7 R(2)(0, 2)5

⊗f R(2)(0, 2)7 5 7 R(2)(0, 2)7

⊗f R(2)(1, 5) 4 7 R(2)(1, 5)

⊗f R(2)(2, 5) 4 7 R(2)(2, 5)

⊗f R(2)(1, 7) 6 7 R(2)(1, 7)

⊗f R(2)(2, 7) 6 7 R(2)(2, 7)

R(1)(0)1 ⊗f R(2)(5/8, 5/8) 5 7 R(2)(1/8, 1/8) ⊕ V(35/24)

⊗f R(2)(1/3, 1/3) 5 7 R(3)(0, 0, 1, 1)

⊗f R(2)(1/8, 1/8) 5 7 R(2)(5/8, 5/8) ⊕ 2V(−1/24)

⊗f R(2)(5/8, 21/8) 4 7 R(2)(1/8, 33/8) ⊕ 2V(35/24)

⊗f R(2)(1/3, 10/3) 4 7 R(3)(0, 1, 2, 5)?
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L L̃max Fusion product

⊗f R(2)(1/8, 33/8) 4 7 R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(0, 1)5 5 7 R(2)(0, 2)7 ⊕ R(2)(1/3, 1/3)

⊗f R(2)(0, 1)7 5 7 R(2)(0, 2)5 ⊕ 2V(1/3)

⊗f R(2)(0, 2)5 5 7 R(2)(0, 1)7 ⊕ V(10/3)

⊗f R(2)(0, 2)7 5 7 R(2)(0, 1)5

⊗f R(2)(1, 5) 4 7 R(2)(2, 7)? ⊕ R(2)(1/3, 10/3)

⊗f R(2)(2, 5) 4 7 R(2)(1, 7)? ⊕ 2V(10/3)

⊗f R(2)(1, 7) 4 7 R(2)(2, 5) ⊕ V(1/3) ⊕ V(28/3)

⊗f R(2)(2, 7) 4 7 R(2)(1, 5)

In order to extract the fusion of higher rank representations we used the symmetry and
associativity properties of the fusion product along the lines described in section 4.3. For
these calculations we applied our explicit results of the Nahm algorithm in the form stated in
the tables above. The results are listed below.

Fusion product

R(2)(5/8, 5/8) ⊗f R(2)(5/8, 5/8) 2R(3)(0, 0, 2, 2) ⊕ R(3)(0, 1, 2, 5) ⊕ R(2)(1/3, 1/3)

⊕R(2)(10/3, 28/3)

⊗f R(2)(1/3, 1/3) R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ R(2)(33/8, 65/8)

⊕4V(−1/24) ⊕ 2V(35/24)

⊗f R(2)(1/8, 1/8) 2R(3)(0, 0, 1, 1) ⊕ R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(5/8, 21/8) R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 5) ⊕ R(3)(1, 5, 7, 15)

⊕2R(2)(1/3, 1/3) ⊕ 2R(2)(10/3, 28/3)

⊗f R(2)(1/3, 10/3) 2R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ 2R(2)(33/8, 65/8)

⊕R(2)(85/8, 133/8) ⊕ 2V(−1/24) ⊕ 4V(35/24)

⊕2V(143/24)

⊗f R(2)(1/8, 33/8) R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 7) ⊕ R(3)(2, 5, 7, 12)

⊕2R(2)(1/3, 10/3) ⊕ R(2)(28/3, 55/3)

⊗f R(2)(0, 1)5 2R(2)(1/8, 1/8) ⊕ R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ 2V(35/24)

⊕V(143/24)

⊗f R(2)(0, 1)7 2R(2)(1/8, 1/8) ⊕ R(2)(1/8, 33/8) ⊕ 2V(35/24)

⊗f R(2)(0, 2)5 2R(2)(5/8, 5/8) ⊕ R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(0, 2)7 2R(2)(5/8, 5/8) ⊕ R(2)(1/8, 33/8)

R(2)(1/3, 1/3) ⊗f R(2)(1/3, 1/3) 2R(3)(0, 0, 2, 2) ⊕ R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 1/3)

⊕R(2)(1/3, 10/3)

⊗f R(2)(1/8, 1/8) 4R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ V(−1/24)

⊕2V(35/24) ⊕ V(143/24)

⊗f R(2)(5/8, 21/8) 2R(2)(1/8, 1/8) ⊕ 4R(2)(5/8, 21/8) ⊕ 2R(2)(33/8, 65/8)

⊕2V(−1/24) ⊕ 2V(35/24) ⊕ 2V(143/24) ⊕ V(323/24)

⊗f R(2)(1/3, 10/3) R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 7) ⊕ R(3)(1, 5, 7, 12)

⊕R(2)(1/3, 1/3) ⊕ 2R(2)(1/3, 10/3) ⊕ R(2)(10/3, 28/3)

⊗f R(2)(1/8, 33/8) 2R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ 2R(2)(33/8, 65/8)

⊕R(2)(85/8, 133/8) ⊕ 2V(−1/24) ⊕ 4V(35/24)

⊕2V(143/24)

⊗f R(2)(0, 1)5 2R(3)(0, 0, 1, 1) ⊕ R(3)(0, 1, 2, 5)

⊗f R(2)(0, 1)7 2R(3)(0, 0, 1, 1) ⊕ R(2)(1/3, 10/3)

⊗f R(2)(0, 2)5 R(3)(0, 1, 2, 5) ⊕ 2R(2)(1/3, 1/3)

⊗f R(2)(0, 2)7 2R(2)(1/3, 1/3) ⊕ R(2)(1/3, 10/3)

R(2)(1/8, 1/8) ⊗f R(2)(1/8, 1/8) 2R(3)(0, 0, 2, 2) ⊕ R(3)(0, 1, 2, 5) ⊕ 4R(2)(1/3, 1/3)

⊗f R(2)(5/8, 21/8) R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 7) ⊕ R(3)(2, 5, 7, 12)

⊕4R(2)(1/3, 10/3)
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Fusion product

⊗f R(2)(1/3, 10/3) 2R(2)(1/8, 1/8) ⊕ 4R(2)(5/8, 21/8) ⊕ 2R(2)(33/8, 65/8)

⊕2V(−1/24) ⊕ 2V(35/24) ⊕ 2V(143/24) ⊕ V(323/24)

⊗f R(2)(1/8, 33/8) R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 5) ⊕ R(3)(1, 5, 7, 15)

⊕2R(2)(1/3, 1/3) ⊕ 2R(2)(10/3, 28/3)

⊗f R(2)(0, 1)5 2R(2)(5/8, 5/8) ⊕ R(2)(1/8, 33/8) ⊕ 4V(−1/24)

⊕2V(35/24)

⊗f R(2)(0, 1)7 2R(2)(5/8, 5/8) ⊕ R(2)(5/8, 21/8) ⊕ 4V(−1/24)

⊗f R(2)(0, 2)5 2R(2)(1/8, 1/8) ⊕ R(2)(1/8, 33/8) ⊕ 2V(35/24)

⊗f R(2)(0, 2)7 2R(2)(1/8, 1/8) ⊕ R(2)(5/8, 21/8)

R(2)(0, 1)5 ⊗f R(2)(0, 1)5 2R(2)(0, 2)7 ⊕ R(2)(2, 7) ⊕ 2R(2)(1/3, 1/3)

⊕R(2)(1/3, 10/3)

⊗f R(2)(0, 1)7 R(3)(0, 0, 2, 2) ⊕ 2R(2)(1/3, 1/3)

⊗f R(2)(0, 2)5 R(3)(0, 0, 1, 1) ⊕ R(2)(1/3, 10/3)

⊗f R(2)(0, 2)7 2R(2)(0, 1)5 ⊕ R(2)(1, 5)

R(2)(0, 1)7 ⊗f R(2)(0, 1)7 2R(2)(0, 2)5 ⊕ R(2)(2, 5) ⊕ 4V(1/3)

⊗f R(2)(0, 2)5 2R(2)(0, 1)7 ⊕ R(2)(1, 7) ⊕ 2V(10/3)

⊗f R(2)(0, 2)7 R(3)(0, 0, 1, 1)

R(2)(0, 2)5 ⊗f R(2)(0, 2)5 2R(2)(0, 2)5 ⊕ R(2)(2, 5) ⊕ V(1/3) ⊕ V(28/3)

⊗f R(2)(0, 2)7 R(3)(0, 0, 2, 2)

R(2)(0, 2)7 ⊗f R(2)(0, 2)7 2R(2)(0, 2)7 ⊕ R(2)(2, 7)

R(3)(0, 0, 1, 1) ⊗f V(5/8) 2R(2)(1/8, 1/8) ⊕ R(2)(5/8, 21/8)

⊗f V(1/3) 2R(3)(0, 0, 1, 1) ⊕ R(2)(1/3, 10/3)

⊗f V(1/8) 2R(2)(5/8, 5/8) ⊕ R(2)(1/8, 33/8) ⊕ 4V(−1/24) ⊕ 2V(35/24)

⊗f V(−1/24) 4R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ V(−1/24)

⊕2V(35/24) ⊕ V(143/24)

⊗f V(2) R(3)(0, 0, 1, 1)

⊗f V(1) R(3)(0, 0, 2, 2) ⊕ 2R(2)(1/3, 1/3)

⊗f V(7) R(3)(0, 1, 2, 5)

⊗f V(5) R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(1)(0)2 R(3)(0, 0, 1, 1)

⊗f R(1)(0)1 R(3)(0, 0, 2, 2) ⊕ 2R(2)(1/3, 1/3)

⊗f R(2)(5/8, 5/8) R(2)(5/8, 5/8) ⊕ 2R(2)(5/8, 21/8) ⊕ R(2)(21/8, 85/8)

⊕4R(2)(1/8, 1/8) ⊕ 2R(2)(1/8, 33/8)

⊕2V(−1/24) ⊕ 4V(35/24) ⊕ 2V(143/24)

⊗f R(2)(1/3, 1/3) 4R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 5) ⊕ R(2)(1/3, 1/3)

⊕2R(2)(1/3, 10/3) ⊕ R(2)(10/3, 28/3)

⊗f R(2)(1/8, 1/8) 4R(2)(5/8, 5/8) ⊕ 2R(2)(5/8, 21/8) ⊕ R(2)(1/8, 1/8)

⊕2R(2)(1/8, 33/8) ⊕ R(2)(33/8, 65/8)

⊕8V(−1/24) ⊕ 4V(35/24)

⊗f R(2)(0, 1)5 2R(3)(0, 0, 2, 2) ⊕ R(3)(0, 1, 2, 7) ⊕ 4R(2)(1/3, 1/3)

⊕2R(2)(1/3, 10/3)

⊗f R(2)(0, 1)7 2R(3)(0, 0, 2, 2) ⊕ R(3)(0, 1, 2, 5) ⊕ 4R(2)(1/3, 1/3)

⊗f R(2)(0, 2)5 2R(3)(0, 0, 1, 1) ⊕ R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(0, 2)7 2R(3)(0, 0, 1, 1) ⊕ R(3)(0, 1, 2, 5)

⊗f R(3)(0, 0, 1, 1) 4R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 5) ⊕ R(3)(0, 0, 1, 1)

⊕2R(3)(0, 1, 2, 7) ⊕ R(3)(2, 5, 7, 12)

⊕8R(2)(1/3, 1/3) ⊕ 4R(2)(1/3, 10/3)

⊗f R(3)(0, 0, 2, 2) R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 5) ⊕ R(3)(1, 5, 7, 15)

⊕4R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 1/3)

⊕4R(2)(1/3, 10/3) ⊕ 2R(2)(10/3, 28/3)
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Fusion product

R(3)(0, 0, 2, 2) ⊗f V(5/8) 2R(2)(5/8, 5/8) ⊕ R(2)(1/8, 33/8)

⊗f V(1/3) R(3)(0, 1, 2, 5) ⊕ 2R(2)(1/3, 1/3)

⊗f V(1/8) 2R(2)(1/8, 1/8) ⊕ R(2)(5/8, 21/8) ⊕ V(−1/24)

⊕2V(35/24) ⊕ V(143/24)

⊗f V(−1/24) R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ R(2)(33/8, 65/8)

⊕4V(−1/24) ⊕ 2V(35/24)

⊗f V(2) R(3)(0, 0, 2, 2)

⊗f V(1) R(3)(0, 0, 1, 1) ⊕ R(2)(1/3, 10/3)

⊗f V(7) R(3)(0, 1, 2, 7)

⊗f V(5) R(3)(0, 1, 2, 5) ⊕ R(2)(1/3, 1/3) ⊕ R(2)(10/3, 28/3)

⊗f R(1)(0)2 R(3)(0, 0, 2, 2)

⊗f R(1)(0)1 R(3)(0, 0, 1, 1) ⊕ R(2)(1/3, 10/3)

R(3)(0, 0, 2, 2) ⊗f R(2)(5/8, 5/8) 4R(2)(5/8, 5/8) ⊕ 2R(2)(5/8, 21/8) ⊕ R(2)(1/8, 1/8)

⊕2R(2)(1/8, 33/8) ⊕ R(2)(33/8, 65/8) ⊕ 2V(−1/24)

⊕2V(35/24) ⊕ 2V(143/24) ⊕ V(323/24)

⊗f R(2)(1/3, 1/3) R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 5) ⊕ R(3)(2, 5, 7, 12)

⊕4R(2)(1/3, 1/3) ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(1/8, 1/8) R(2)(5/8, 5/8) ⊕ 2R(2)(5/8, 21/8) ⊕ R(2)(21/8, 85/8)

⊕4R(2)(1/8, 1/8) ⊕ 2R(2)(1/8, 33/8)

⊕2V(−1/24) ⊕ 4V(35/24) ⊕ 2V(143/24)

⊗f R(2)(0, 1)5 2R(3)(0, 0, 1, 1) ⊕ R(3)(0, 1, 2, 5) ⊕ R(2)(1/3, 1/3)

⊕2R(2)(1/3, 10/3) ⊕ R(2)(10/3, 28/3)

⊗f R(2)(0, 1)7 2R(3)(0, 0, 1, 1) ⊕ R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(0, 2)5 2R(3)(0, 0, 2, 2) ⊕ R(3)(0, 1, 2, 5) ⊕ R(2)(1/3, 1/3)

⊕R(2)(10/3, 28/3)

⊗f R(2)(0, 2)7 2R(3)(0, 0, 2, 2) ⊕ R(3)(0, 1, 2, 7)

⊗f R(3)(0, 0, 2, 2) 4R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 5) ⊕ R(3)(0, 0, 1, 1)

⊕2R(3)(0, 1, 2, 7) ⊕ R(3)(2, 5, 7, 12) ⊕ 2R(2)(1/3, 1/3)

⊕2R(2)(1/3, 10/3) ⊕ 2R(2)(10/3, 28/3) ⊕ R(2)(28/3, 55/3)

R(3)(0, 1, 2, 5) ⊗f V(5/8) 2R(2)(5/8, 21/8) ⊕ R(2)(1/8, 1/8) ⊕ R(2)(33/8, 65/8)

⊗f V(1/3) 2R(3)(0, 1, 2, 5) ⊕ R(2)(1/3, 1/3) ⊕ R(2)(10/3, 28/3)

⊗f V(1/8) R(2)(5/8, 5/8) ⊕ 2R(2)(1/8, 33/8) ⊕ R(2)(21/8, 85/8)

⊕2V(−1/24) ⊕ 4V(35/24) ⊕ 2V(143/24)

⊗f V(−1/24) 2R(2)(1/8, 1/8) ⊕ 4R(2)(5/8, 21/8) ⊕ 2R(2)(33/8, 65/8)

⊕2V(−1/24) ⊕ 2V(35/24) ⊕ 2V(143/24) ⊕ V(323/24)

⊗f V(2) R(3)(0, 1, 2, 5)

⊗f V(1) R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(1)(0)2 R(3)(0, 1, 2, 5)

⊗f R(1)(0)1 R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(0, 2)7 R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 5) ⊕ R(3)(2, 5, 7, 12)

Appendix C. Explicit fusion rules for c2, 5 = −22/5

In the following table we have collected the results of our explicit calculations of the fusion
product of irreducible representations in the augmented c2,5 = −22/5 model. These results
are certainly not complete, but mainly serve to compute the lowest higher rank representations
as well as to check the proposed fusion rules on a variety of examples. The notations are as
before.
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L L̃max Fusion product

V(11/8) ⊗f V(11/8) 5 7 R(2)(0, 4)13

⊗f V(27/40) 5 7 R(2)(−1/5, 14/5)11

⊗f V(2/5) 5 7 V(−9/40)

⊗f V(7/40) 5 7 R(2)(−1/5, 9/5)9

⊗f V(−1/8) 7 8 R(2)(0, 1)7

⊗f V(−9/40) 4 6 R(2)(2/5, 2/5)

V(27/40) ⊗f V(27/40) 5 7 R(2)(0, 4)13 ⊕ R(2)(−1/5, 9/5)9

⊗f V(2/5) 5 7 R(2)(−1/8, −1/8)

⊗f V(7/40) 5 7 R(2)(0, 1)7 ⊕ R(2)(−1/5, 14/5)11

⊗f V(−1/8) 5 7 R(2)(−1/5, 9/5)9 ⊕ R(2)(2/5, 2/5)

⊗f V(−9/40) 4 6 R(3)(0, 0, 1, 1)

V(2/5) ⊗f V(11/8) 5 7 V(−9/40)

⊗f V(27/40) 5 7 R(2)(−1/8, −1/8)

⊗f V(2/5) 5 7 R(2)(0, 4)7 ⊕ R(2)(−1/5, 9/5)11 ⊕ V(2/5)

⊗f V(7/40) 4 6 R(2)(7/40, 7/40) ⊕ V(−9/40)

⊗f V(−1/8) 4 6 R(2)(−1/8, −1/8) ⊕ R(2)(27/40, 27/40)

⊗f V(−9/40) 3 5 R(2)(7/40, 7/40) ⊕ R(2)(11/8, 11/8) ⊕ V(−9/40)

⊗f R(1)(0)1 5 7 R(2)(0, 1)13 ⊕ R(2)(−1/5, 14/5)9

⊗f V(1) 3 9 R(2)(0, 1)13 ⊕ R(2)(−1/5, 14/5)9

V(7/40) ⊗f V(7/40) 4 6 R(2)(0, 4)13 ⊕ R(2)(−1/5, 9/5)9 ⊕ R(2)(2/5, 2/5)

⊗f V(−1/8) 4 6 R(3)(0, 0, 1, 1) ⊕ R(2)(−1/5, 14/5)11

⊗f V(−9/40) 4 6 R(3)(−1/5, −1/5, 9/5, 9/5) ⊕ R(2)(2/5, 2/5)

V(−1/8) ⊗f V(−1/8) 3 5 R(3)(−1/5, −1/5, 9/5, 9/5) ⊕ R(2)(0, 4)13

⊕R(2)(2/5, 2/5)

⊗f V(−9/40) 4 6 R(3)(0, 0, 1, 1) ⊕ R(3)(−1/5, −1/5, 14/5, 14/5)

V(−9/40) ⊗f V(−9/40) 4 5 R(3)(0, 0, 4, 4) ⊕ R(3)(−1/5, −1/5, 9/5, 9/5)

⊕R(2)(2/5, 2/5)

V(14/5) ⊗f V(14/5) 2 8 R(1)(0)4 ⊕ R(1)(−1/5)2

⊗f R(1)(−1/5)2 2 8 V(1) ⊕ V(14/5)

⊗f R(1)(−1/5)3 2 8 V(4) ⊕ V(9/5)

V(4) ⊗f V(4) 2 9 R(1)(0)4

⊗f R(1)(0)1 2 9 V(1)

⊗f R(1)(0)4 2 9 V(4)
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